【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個命題:
①f(x)是周期函數(shù);②f(x)的圖象關(guān)于x=1對稱;③f(x)在[1,2]上是減函數(shù);④f(2)=f(0).
其中正確命題的序號是____________.(請把正確命題的序號全部寫出來)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求的值.
(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值,及相應(yīng)的的值.
(Ⅲ)求函數(shù)在區(qū)間的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),若滿足①;②當(dāng),且時,都有;③當(dāng),且時, ,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):
①; ② ;
③ ; ④.
則其中是“偏對稱函數(shù)”的函數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB ∥EF,矩形ABCD所在平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(1)求證:平面DAF⊥平面CBF;
(2)求直線AB與平面CBF所成角的大小;
(3)求AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-ax-1.
(1)當(dāng)a>0時,設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤0;
(2)求證:對任意的正整數(shù)n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左,右焦點(diǎn)分別為,且與短軸的一個端點(diǎn)Q構(gòu)成一個等腰直角三角形,點(diǎn)P()在橢圓上,過點(diǎn)作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點(diǎn)
(1)求橢圓的方程
(2)求證:直線MN過定點(diǎn)R()
(3)求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),.
(1)若,曲線在點(diǎn)處的切線與軸垂直,求的值;
(2)若,試探究函數(shù)與的圖象在其公共點(diǎn)處是否存在公切線.若存在,研究值的個數(shù);,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=在點(diǎn)(1,1)處的切線方程為x+y=2.
(1)求a,b的值;
(2)對函數(shù)f(x)定義域內(nèi)的任一個實(shí)數(shù)x,不等式f(x)-<0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com