【題目】已知橢圓: 的左,右焦點分別為,且與短軸的一個端點Q構(gòu)成一個等腰直角三角形,點P()在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R()
(3)求面積的最大值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系中,已直曲線,將曲線C上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,得到曲線C1,又已知直線,且直線與C1交于A、B兩點,
(1)求曲線C1的直角坐標(biāo)方程,并說明它是什么曲線;
(2)設(shè)定點, 求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(Ⅰ)當(dāng)(為自然對數(shù)的底數(shù))時,求的極小值;
(Ⅱ)若函數(shù)存在唯一零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個命題:
①f(x)是周期函數(shù);②f(x)的圖象關(guān)于x=1對稱;③f(x)在[1,2]上是減函數(shù);④f(2)=f(0).
其中正確命題的序號是____________.(請把正確命題的序號全部寫出來)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a<0).
(1)當(dāng)a=-1時,求函數(shù)f(x)的極值;
(2)若函數(shù)F(x)=f(x)+1沒有零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是腰長為6的等腰直角三角形,俯視圖是正方形.
(1)請畫出該幾何體的直觀圖,并求出它的體積;
(2)用多少個這樣的幾何體可以拼成一個棱長為6的正方體ABCD—A1B1C1D1?如何組拼?試證明你的結(jié)論;
(3)在(2)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點為E, 求平面AB1E與平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中, , 于點, ,且.沿把折起到的位置(如圖),使.
(I)求證: 平面.
(II)求三棱錐的體積.
(III)線段上是否存在點,使得平面,若存在,指出點的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合計 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱錐S-ABCD中,SA=AB=2,E,F,G分別為BC,SC,CD的中點.設(shè)P為線段FG上任意一點.
(1)求證:EP⊥AC;
(2)當(dāng)P為線段FG的中點時,求直線BP與平面EFG所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com