【題目】設(shè)函數(shù)
(Ⅰ)當(為自然對數(shù)的底數(shù))時,求的極小值;
(Ⅱ)若函數(shù)存在唯一零點,求的取值范圍.
【答案】(Ⅰ)的極小值為2;(Ⅱ)當或時,函數(shù)有且只有一個零點.
【解析】試題分析:(1)先求導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律,進而確定極值(2)先化簡,再利用參變分離法得,利用導數(shù)研究函數(shù),由圖像可得存在唯一零點時的取值范圍
試題解析:(1)由題設(shè),當時, ,
則,由,得.
∴當, , 在上單調(diào)遞減,
當, , 在上單調(diào)遞增,
∴當時, 取得極小值,
∴的極小值為2.
(2)由題設(shè),
令,得.
設(shè),則,
當時, , 在上單調(diào)遞增;
當時, , 在上單調(diào)遞減.
∴是的唯一極值點,且是極大值點,因此也是的最大值點.
∴的最大值為.
又,結(jié)合的圖象(如圖),可知
當時,函數(shù)有且只有一個零點;
當時,函數(shù)有且只有一個零點.
所以,當或時,函數(shù)有且只有一個零點.
科目:高中數(shù)學 來源: 題型:
【題目】假定下述數(shù)據(jù)是甲、乙兩個供貨商的交貨天數(shù):
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估計兩個供貨商的交貨情況,并問哪個供貨商交貨時間短一些,哪個供貨商交貨時間較具一致性與可靠性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的定義域為,且滿足對于任意,有
(1)求的值;
(2)判斷的奇偶性并證明你的結(jié)論;
(3)若,且在上是增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求的值.
(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值,及相應(yīng)的的值.
(Ⅲ)求函數(shù)在區(qū)間的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),若滿足①;②當,且時,都有;③當,且時, ,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):
①; ② ;
③ ; ④.
則其中是“偏對稱函數(shù)”的函數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為圓O的直徑,點E、F在圓O上,AB ∥EF,矩形ABCD所在平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(1)求證:平面DAF⊥平面CBF;
(2)求直線AB與平面CBF所成角的大小;
(3)求AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為,且與短軸的一個端點Q構(gòu)成一個等腰直角三角形,點P()在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R()
(3)求面積的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com