【題目】如圖,正四棱錐S-ABCD中,SA=AB=2,E,F,G分別為BC,SC,CD的中點.設(shè)P為線段FG上任意一點.
(1)求證:EP⊥AC;
(2)當(dāng)P為線段FG的中點時,求直線BP與平面EFG所成角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)先證AC⊥平面SBD,再證平面EFG∥平面BSD,即得AC⊥平面GEF,因此可得EP⊥AC;(2)過B作BH⊥GE于H,根據(jù)三垂線定理可得∠BPH就是直線BP與平面EFG所成的角.再解三角形可得直線BP與平面EFG所成角的余弦值.
試題解析:(1)證明 設(shè)AC交BD于O點,
∵S-ABCD為正四棱錐,
∴SO⊥底面ABCD,BD⊥AC,
又AC平面ABCD,
∴SO⊥AC,∵BD∩SO=O,
BD平面SBD,SO平面SBD,
∴AC⊥平面SBD,
∵E,F,G分別為BC,SC,CD的中點,
∴FG∥SD,BD∥EG.
又FG∩EG=G,SD∩BD=D,
FG平面EFG,EG平面EFG,
SDBSD,BD平面BSD,
∴平面EFG∥平面BSD,
∴AC⊥平面GEF.
又∵PE平面GEF,∴PE⊥AC.
(2)解 過B作BH⊥GE于H,連接PH,
∵BD⊥AC,BD∥GH,
∴BH∥AC,
由(1)知AC⊥平面GEF,
則BH⊥平面GEF.
∴∠BPH就是直線BP與平面EFG所成的角.
在Rt△BHP中,BH=,PH=,PB=,
故cos∠BPH==.
點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為,且與短軸的一個端點Q構(gòu)成一個等腰直角三角形,點P()在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R()
(3)求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=在點(1,1)處的切線方程為x+y=2.
(1)求a,b的值;
(2)對函數(shù)f(x)定義域內(nèi)的任一個實數(shù)x,不等式f(x)-<0恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中a∈R.
(Ⅰ)當(dāng)a=1時,判斷f(x)的單調(diào)性;
(Ⅱ)若g(x)在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時, ,則對任意,函數(shù)的零點個數(shù)至多有( )
A. 3個 B. 4個 C. 6個 D. 9個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.
(1)計算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);
(2)估計該天食堂利潤不少于760元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形 的四個頂點在橢圓: 上,對角線所在直線的斜率為,且, .
(1)當(dāng)點為橢圓的上頂點時,求所在直線方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com