若△ABC三內(nèi)角A,B,C所對(duì)的三邊長(zhǎng)分別為a,b,c,且面積S△ABC=
1
4
(b2+c2-a2),求角A.
考點(diǎn):余弦定理
專題:解三角形
分析:由條件利用余弦定理可得
1
2
bc•sinA=
1
2
bc•cosA,即sinA=cosA,從而求得A的值.
解答: 解:由題意可得S△ABC=
1
2
bc•sinA,再由余弦定理可得 S△ABC=
1
4
(b2+c2-a2)=
1
4
•2bc•cosA=
1
2
bc•cosA,
1
2
bc•sinA=
1
2
bc•cosA,∴sinA=cosA,∴A=45°.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-2(-1)klnx的導(dǎo)函數(shù)為f′(x),其中k∈N+
(1)當(dāng)k為偶數(shù)時(shí),數(shù)列{an}滿足:a1=1,2anf′(an)=an+12-3,求數(shù)列{an2}的通項(xiàng)公式;
(2)當(dāng)k為奇數(shù)時(shí),數(shù)列{bn}滿足:b1=1,bn+1=
2
f′(bn)
,令Sn=b1+b2+…+bn.證明:
n
2
≤b2S1+b3S2+…+bn+1Sn<n+
1
2n
-1(n∈N+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:
(1)2ax2+4x+a+1≤0;
(2)(1-a)x2+4ax-(4a+1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意正整數(shù)n都有6Sn=1-2an,記bn=log
1
2
an
(Ⅰ)求a1,a2的值;
(Ⅱ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)令cn=
n+1
(n+2)2(bn-1)2
,數(shù)列{cn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn
5
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+4ax-4a+3=0},B={x|x2+(a-1)x+a2=0},C={x|x2+2ax-2a=0},其中至少有一個(gè)集合不為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0),其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為2.
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)如圖,C、D分別為橢圓C1的上下頂點(diǎn),M為橢圓C1上的一動(dòng)點(diǎn),過(guò)點(diǎn)M做圓C2:(x-1)2+y2=1的兩條切線分別交y軸于點(diǎn)P,Q兩點(diǎn),記△MCD、△MPQ的面積分別為S1,S2,求
S1
S2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x
x-a
(a≠0),若a>0且y在x>1內(nèi)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinB:sinC=3:4,則邊c:b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)拋擲一顆紅骰子和一顆藍(lán)骰子,觀察向上的點(diǎn)數(shù),記“紅骰子向上的點(diǎn)數(shù)是3的倍數(shù)”為事件A,“兩顆骰子的點(diǎn)數(shù)大于8”為事件B,則P(B|A)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案