【題目】國慶假期是實施免收小型客車高速通行費的重大節(jié)假日,有一個群名為天狼星的自駕游車隊,該車隊是由31輛身長約為(以計算)的同一車型組成,行程中經過一個長為2725的隧道(通過隧道的車速不超過),勻速通過該隧道,設車隊的速度為根據(jù)安全和車流的需要,,相鄰兩車之間保持的距離;相鄰兩車之間保持的距離,自第一輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間

(1)將表示成為的函數(shù)

(2)求該車隊通過隧道時間的最小值及此時車隊的速度

【答案】(1)當,,當,;(2)車隊通過隧道時間的最小值為,此時車隊的速度為

【解析】

試題分析:(1)根據(jù)題意得,分兩種情況討論,分別列出函數(shù)的解析式;(2)求解兩種情況下的最值,即可得到結論.

試題解析:(1)當;

(2)當,;

,,取等號

因此,該車隊通過隧道時間的最小值為,此時車隊的速度為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認為孩子的幸福感強與是否是留守兒童有關?

(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.

參考公式: ; 附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)用定義證明:函數(shù)在區(qū)間上是減函數(shù);

(2)若函數(shù)是偶函數(shù),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是直線上的兩個動點,線段的長為的中點.

(1)求動點的軌跡的方程;

(2)若過點(1,0)的直線與曲線交于不同兩點

時,求直線的方程;

試問在軸上是否存在點,使恒為定值?若存在,求出點的坐標及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,,動點滿足.

(1)求動點的軌跡方程,并說明軌跡是什么曲線;

(2),點為動點的軌跡曲線上的任意一點,過點作圓:的切線,切點為.試探究平面內是否存在定點,使為定值,若存在,請求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點是直線的一動點,過點作圓的切線,切點為.

(1)當切線的長度為時,求點的坐標;

(2) 的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.

(3)求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某玩具生產公司每天計劃生產衛(wèi)兵、騎兵、傘兵這三種玩具共100個,生產一個衛(wèi)兵需5分鐘,生產一個騎兵需7分鐘,生產一個傘兵需4分鐘,已知總生產時間不超過10小時,若生產一個衛(wèi)兵可獲利潤5元,生產一個騎兵可獲利潤6元,生產一個傘兵可獲利潤3元.

(1)用每天生產的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內角的對邊分別為,已知.

(1)求角的值;

(2),當取最小值時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,存在定點,使得對于任意的都有,求點的坐標;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

同步練習冊答案