【題目】在直角坐標(biāo)系中,,動(dòng)點(diǎn)滿足.

(1)求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線;

(2),點(diǎn)為動(dòng)點(diǎn)的軌跡曲線上的任意一點(diǎn),過(guò)點(diǎn)作圓:的切線,切點(diǎn)為.試探究平面內(nèi)是否存在定點(diǎn),使為定值,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

【答案】1詳見(jiàn)解析;2存在點(diǎn)

【解析】

試題分析:(1)設(shè),,化簡(jiǎn)可得動(dòng)點(diǎn)的軌跡方程.(2)由(1)當(dāng)時(shí),動(dòng)點(diǎn)的軌跡方程為:,設(shè),

,假設(shè)在平面內(nèi)存在點(diǎn)使得(其中為正常數(shù))

化簡(jiǎn),整理可得對(duì)于任意滿足恒成立進(jìn)而求出,即可求出結(jié)果.

試題解析:(1)設(shè),

化簡(jiǎn)得動(dòng)點(diǎn)的軌跡方程為:

表示以為圓心,為半徑的圓.

(2)由(1)當(dāng)時(shí),動(dòng)點(diǎn)的軌跡方程為:,設(shè)

假設(shè)在平面內(nèi)存在點(diǎn)使得(其中為正常數(shù))

化簡(jiǎn)得:

對(duì)于任意滿足恒成立

解得

存在點(diǎn)滿足題意

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在簡(jiǎn)單隨機(jī)抽樣中,某一個(gè)個(gè)體被抽到的可能性(

A.第一次被抽到的可能性最大B.第一次被抽到的可能性最小

C.每一次被抽到的可能性相等D.與抽取幾個(gè)樣本有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三次函數(shù),下列命題正確的是 .

函數(shù)關(guān)于原點(diǎn)中心對(duì)稱;

,兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線,分別與交于兩點(diǎn),則這四個(gè)點(diǎn)的橫坐標(biāo)滿足關(guān)系;

為切點(diǎn),作切線與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線與圖像交于點(diǎn),則點(diǎn)橫坐標(biāo)為;

,函數(shù)圖像上存在四點(diǎn),使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個(gè)正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,且點(diǎn)在函數(shù)的圖象上.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)

(1)求當(dāng)時(shí),點(diǎn)滿足的概率;

(2)求當(dāng)時(shí),點(diǎn)滿足的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶假期是實(shí)施免收小型客車高速通行費(fèi)的重大節(jié)假日,有一個(gè)群名為天狼星的自駕游車隊(duì),該車隊(duì)是由31輛身長(zhǎng)約為(以計(jì)算)的同一車型組成,行程中經(jīng)過(guò)一個(gè)長(zhǎng)為2725的隧道(通過(guò)隧道的車速不超過(guò)),勻速通過(guò)該隧道,設(shè)車隊(duì)的速度為,根據(jù)安全和車流的需要,當(dāng)時(shí),相鄰兩車之間保持的距離當(dāng)時(shí),相鄰兩車之間保持的距離自第一輛車車頭進(jìn)入隧道至第31輛車車尾離開(kāi)隧道所用的時(shí)間

(1)將表示成為的函數(shù);

(2)求該車隊(duì)通過(guò)隧道時(shí)間的最小值及此時(shí)車隊(duì)的速度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為

A.12萬(wàn)元 B.16萬(wàn)元

C.17萬(wàn)元 D.18萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班一次數(shù)學(xué)考試成績(jī)頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為,已知成績(jī)大于等于分的人數(shù)為人,現(xiàn)采用分層抽樣的方式抽取一個(gè)容量為的樣本.

(1)求每個(gè)分組所抽取的學(xué)生人數(shù);

(2)從數(shù)學(xué)成績(jī)?cè)?/span>的樣本中任取人,求恰有人成績(jī)?cè)?/span>的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案