【題目】如圖,四棱錐中,,,,,PA=PD=CD=BC=1.
(1)求證:平面平面;
(2)求直線(xiàn)與平面所成角的正弦值.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)推導(dǎo)出AD⊥BD,PA⊥BD,從而BD⊥平面PAD,由此能證明平面PAD⊥平面ABCD.
(2)取AD中點(diǎn)O,連結(jié)PO,則PO⊥AD,以O為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)O且平行于BC的直線(xiàn)為x軸,過(guò)點(diǎn)O且平行于AB的直線(xiàn)為y軸,直線(xiàn)PO為z軸,建立空間直角坐標(biāo)系,利用空間向量法能求出直線(xiàn)PA與平面PBC所成角的正弦值.
(1)∵AB∥CD,∠BCD,PA=PD=CD=BC=1,
∴BD,∠ABC,,∴,
∵AB=2,∴AD,∴AB2=AD2+BD2,∴AD⊥BD,
∵PA⊥BD,PA∩AD=A,∴BD⊥平面PAD,
∵BD平面ABCD,∴平面PAD⊥平面ABCD.
(2)取AD中點(diǎn)O,連結(jié)PO,則PO⊥AD,且PO,
由平面PAD⊥平面ABCD,知PO⊥平面ABCD,
以O為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)O且平行于BC的直線(xiàn)為x軸,過(guò)點(diǎn)O且平行于AB的直線(xiàn)為y軸,
直線(xiàn)PO為z軸,建立如圖所示的空間直角坐標(biāo)系,
則A(,0),B(,0),C(,0),P(0,0,),
(﹣1,0,0),(,),
設(shè)平面PBC的法向量(x,y,z),
則,取z,得(0,,),
∵(,),
∴cos,
∴直線(xiàn)PA與平面PBC所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù),當(dāng)時(shí),,若,為銳角三角形的兩個(gè)內(nèi)角,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2012年“雙節(jié)”期間,高速公路車(chē)輛較多某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車(chē)中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢(xún)問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速分成六段:,,,,后得到如圖的頻率分布直方圖.
某調(diào)查公司在采樣中,用到的是什么抽樣方法?
求這40輛小型車(chē)輛車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值.
若從車(chē)速在的車(chē)輛中任抽取2輛,求車(chē)速在的車(chē)輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問(wèn)卷調(diào)查,F(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類(lèi):A類(lèi)(不參加課外閱讀),B類(lèi)(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過(guò)3小時(shí)),C類(lèi)(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過(guò)3小時(shí))。調(diào)查結(jié)果如下表:
A類(lèi) | B類(lèi) | C類(lèi) | |
男生 | x | 5 | 3 |
女生 | y | 3 | 3 |
(1)求出表中x,y的值;
(2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計(jì) | |
不參加課外閱讀 | |||
參加課外閱讀 | |||
總計(jì) |
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,過(guò)點(diǎn)向圓引兩條切線(xiàn),,切點(diǎn)為,,若點(diǎn)的坐標(biāo)為,則直線(xiàn)的方程為____________;若為直線(xiàn)上一動(dòng)點(diǎn),則直線(xiàn)經(jīng)過(guò)定點(diǎn)__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求滿(mǎn)足下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過(guò)點(diǎn)M(3,2);
(2)c∶a=5∶13,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離的和為26.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來(lái)的紙質(zhì)廣告收入如下表所示:
根據(jù)這9年的數(shù)據(jù),對(duì)和作線(xiàn)性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.243;
根據(jù)后5年的數(shù)據(jù),對(duì)和作線(xiàn)性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.984.
(1)如果要用線(xiàn)性回歸方程預(yù)測(cè)該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個(gè)方案,
方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測(cè),方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測(cè).
從實(shí)際生活背景以及線(xiàn)性相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適?
附:相關(guān)性檢驗(yàn)的臨界值表:
(2)某購(gòu)物網(wǎng)站同時(shí)銷(xiāo)售某本暢銷(xiāo)書(shū)籍的紙質(zhì)版本和電子書(shū),據(jù)統(tǒng)計(jì),在該網(wǎng)站購(gòu)買(mǎi)該書(shū)籍的大量讀者中,只購(gòu)買(mǎi)電子書(shū)的讀者比例為,紙質(zhì)版本和電子書(shū)同時(shí)購(gòu)買(mǎi)的讀者比例為,現(xiàn)用此統(tǒng)計(jì)結(jié)果作為概率,若從上述讀者中隨機(jī)調(diào)查了3位,求購(gòu)買(mǎi)電子書(shū)人數(shù)多于只購(gòu)買(mǎi)紙質(zhì)版本人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面命題正確的是( )
A.“”是“”的 充 分不 必 要條件
B.命題“若,則”的 否 定 是“ 存 在,則”.
C.設(shè),則“且”是“”的必要而不充分條件
D.設(shè),則“”是“”的必要 不 充 分 條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com