y軸上兩定點(diǎn)B1(0,b)、B2(0,-b),x軸上兩動點(diǎn)M,N.P為B1M與B2N的交點(diǎn),點(diǎn)M,N的橫坐標(biāo)分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點(diǎn)P的軌跡方程.
設(shè)P(x,y),M(xm,0),N(xn,0)(2分)
由M,P,B1三點(diǎn)共線,知
y-b
x-0
=
0-b
xm-0
(4分)
所以xm=
bx
b-y
(6分)
同理得xn=
bx
b+y
(9分)xm•xn=
b2x2
b2-y2
=a2
(10分)
故點(diǎn)P軌跡方程為
x2
a2
+
y2
b2
=1
(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)若直線l:y=kx+
2
與橢圓C1及雙曲線C2都恒有兩個(gè)不同的交點(diǎn),且l與C2的兩個(gè)交點(diǎn)A和B滿足
OA
OB
<6(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點(diǎn)M(4,0)到雙曲線上的點(diǎn)P的最小距離等于1,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓
x2
a2
+
y2
b
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在以點(diǎn)O為圓心,AB為直徑的半圓中,D為半圓弧的中心,P為半圓弧上一點(diǎn),且AB=4,∠POB=30°,雙曲線C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求雙曲線C的方程;
(2)設(shè)過點(diǎn)D的直線l與雙曲線C相交于不同兩點(diǎn)E、F,若△OEF的面積不小于2
2
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓O的半徑為定長r,A是圓O外一定點(diǎn),P是圓上任意一點(diǎn).線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動時(shí),點(diǎn)Q的軌跡是( 。
A.橢圓B.圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請說明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問:是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

【理科】已知雙曲線的中心在坐標(biāo)原點(diǎn)O,一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的方程;
(2)設(shè)直線:y=kx+3與雙曲線交于A、B兩點(diǎn),試問:是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過點(diǎn)O?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(diǎn)P到左右兩焦點(diǎn)F1,F(xiàn)2的距離之和為2
2
,離心率為
2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點(diǎn)F2的直線l交橢圓于A、B兩點(diǎn),若y軸上一點(diǎn)M(0,
3
7
)
滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

同步練習(xí)冊答案