已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)若直線l:y=kx+
2
與橢圓C1及雙曲線C2都恒有兩個不同的交點,且l與C2的兩個交點A和B滿足
OA
OB
<6(其中O為原點),求k的取值范圍.
(Ⅰ)設(shè)雙曲線C2的方程為
x2
a2
-
y2
b2
=1,則a2=4-1=3,再由a2+b2=c2得b2=1.
故C2的方程為
x2
3
-y2=1.
(II)將y=kx+
2
代入
x2
4
+y2=1得(1+4k2)x2+8
2
kx+4=0
由直線l與橢圓C1恒有兩個不同的交點得△1=(8
2
)
2
k2
-16(1+4k2)=16(4k2-1)>0,
即k2
1
4

將y=kx+
2
代入
x2
3
-y2=1得(1-3k2)x2-6
2
kx-9=0.
由直線l與雙曲線C2恒有兩個不同的交點A,B得
1-3k2≠0
2=(-6
2
k)
2
+36(1-3k2)=36(1-k2)>0.

即k2
1
3
且k2<1.②
設(shè)A(xA,yA)B(xB,yB),則xA+xB=
6
2
k
1-3k2
,xA•xB=
-9
1-3k2

OA
OB
<6得xAxB+yAyB<6,
而xAxB+yAyB=xAxB+(kxA+
2
)(kxB+
2

=(k2+1)xAxB+
2
(xA+xB)+2
=(k2+1)•
-9
1-3k2
+
2
k•
6
2
k
1-3k2
+2
=
3k2+7
3k2-1

于是
3k2+7
3k2-1
<6,即
15k2-13
3k2-1
>0.
解此不等式得k2
13
15
或k2
1
3
.③
由①、②、③得
1
4
<k2<或
13
15
<k2<1.
故k的取值范圍為(-1,-
13
15
)∪(-
3
3
,-
1
2
)∪(
1
2
,
3
3
)∪(
13
15
,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知F1,F(xiàn)2分別為橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左、右兩個焦點,一條直線l經(jīng)過點F1與橢圓交于A、B兩點,且△ABF2的周長為8.
(1)求實數(shù)a的值;
(2)若l的傾斜角為
π
4
,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
2
2
,A1,A2分別是橢圓C的左、右兩個頂點,點F是橢圓C的右焦點.點D是x軸上位于A2右側(cè)的一點,且滿足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求橢圓C的方程以及點D的坐標(biāo);
(2)過點D作x軸的垂線n,再作直線l:y=kx+m與橢圓C有且僅有一個公共點P,直線l交直線n于點Q.求證:以線段PQ為直徑的圓恒過定點,并求出定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點.
(Ⅰ)若橢圓上的點A(1,
3
2
)到點F1、F2的距離之和等于4,求橢圓C的方程;
(Ⅱ)設(shè)點P是(Ⅰ)中所得橢圓C上的動點,求線段F1P的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知直線與拋物線y2=2px(p>0)交于A,B兩點,且OA⊥OB,OD⊥AB交AB于點D,點D的坐標(biāo)為(2,1).
(1)求p的值;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
(a>b>0)的離心率e=
6
3
,短軸長為2.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線l:y=ax+1與雙曲線3x2-y2=1有兩個不同的交點,
(1)求a的取值范圍;
(2)設(shè)交點為A,B,是否存在直線l使以AB為直徑的圓恰過原點,若存在就求出直線l的方程,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點在原點、對稱軸為坐標(biāo)軸且開口向右的拋物線過點M(4,-4).
(1)求拋物線的方程;
(2)過拋物線焦點F的直線l與拋物線交于不同的兩點A、B,若|AB|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

y軸上兩定點B1(0,b)、B2(0,-b),x軸上兩動點M,N.P為B1M與B2N的交點,點M,N的橫坐標(biāo)分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案