直線l:y=ax+1與雙曲線3x2-y2=1有兩個不同的交點,
(1)求a的取值范圍;
(2)設(shè)交點為A,B,是否存在直線l使以AB為直徑的圓恰過原點,若存在就求出直線l的方程,若不存在則說明理由.
(1)聯(lián)立方程組
3x2-y2=1
y=ax+1
,消去y,得:
(3-a)2x2-2ax-2=0,…(2分)
由題意方程有兩個實數(shù)根,
3-a2≠0
△=(-2a)2-4(3-a2)×(-2)>0
,…(3分)
解得-
6
<a<
6
,且a≠±
3
,
∴a的取值范圍是(-
6
,-
3
)∪(-
3
,
3
)∪(
3
6
).…(5分)
(2)設(shè)交點坐標(biāo)分別為A(x1,y1),B(x2,y2),
由(1)知,x1+x2=
2a
3-a2
,x1x2=
-2
3-a2
,…(6分)
由題意可得,OA⊥OB(O是坐標(biāo)原點),
則有x1x2+y1y2=0,…(7分)
y1y2=(ax1+1)(ax2+1)=a2x1x2+a(x1+x2)+1…(8分)
∴(a2+1)x1x2+a(x1+x2)+1=0
于是得(a2+1)
-2
3-a2
+a•
2a
3-a2
+1=0

解得a=±1,且滿足(1)的條件,…(10分)
所以存在直線l使以AB為直徑的圓恰過原點,
直線l的方程為y=x+1或y=-x+1.…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求經(jīng)過點P(-1,-6)與拋物線C:x2=4y只有一個公共點的直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線C:y2=2px(p>0)的焦點為F,拋物線C上點M的橫坐標(biāo)為2,且|MF|=3.
(1)求拋物線C的方程;
(2)過焦點F作兩條相互垂直的直線,分別與拋物線C交于M、N和P、Q四點,求四邊形MPNQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)若直線l:y=kx+
2
與橢圓C1及雙曲線C2都恒有兩個不同的交點,且l與C2的兩個交點A和B滿足
OA
OB
<6(其中O為原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若θ是任意實數(shù),則方程x2+4y2sinθ=1所表示的曲線一定不是( 。
A.圓B.雙曲線C.直線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

線段PQ是橢圓
x2
4
+
y2
3
=1
過M(1,0)的一動弦,且直線PQ與直線x=4交于點S,則
|SM|
|SP|
+
|SM|
|SQ|
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線L:y=kx+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點,以O(shè)A、OB為鄰邊作平行四邊形OAPB(O為坐標(biāo)原點).
(1)若k=1,且四邊形OAPB為矩形,求a的值;
(2)若a=2,當(dāng)k變化時(k∈R),求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點M(4,0)到雙曲線上的點P的最小距離等于1,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數(shù)k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案