【題目】已知為單調(diào)遞增數(shù)列,為其前項(xiàng)和,

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)若為數(shù)列的前項(xiàng)和,證明:.

【答案】(1) (2)見(jiàn)解析

【解析】試題分析:(1),所以,

整理得,所以是以為首項(xiàng),為公差的等差數(shù)列,可得;(2)結(jié)合(1)可得,利用裂項(xiàng)相消法求得的前項(xiàng)和,利用放縮法可得結(jié)論.

試題解析:(Ⅰ)當(dāng)時(shí),,所以,即,

為單調(diào)遞增數(shù)列,所以.

,所以,

整理得,所以.

所以,即,

所以是以1為首項(xiàng),1為公差的等差數(shù)列,所以.

(Ⅱ)

所以

.

【方法點(diǎn)晴】本題主要考查數(shù)列的通項(xiàng)與求和公式,以及裂項(xiàng)相消法求數(shù)列的和,屬于中檔題. 裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2) ; (3);(4) ;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某測(cè)量人員為了測(cè)量西江北岸不能到達(dá)的兩點(diǎn),之間的距離,她在西江南岸找到一個(gè)點(diǎn),從點(diǎn)可以觀察到點(diǎn);找到一個(gè)點(diǎn),從點(diǎn)可以觀察到點(diǎn),;找到一個(gè)點(diǎn),從點(diǎn)可以觀察到點(diǎn),;并測(cè)量得到數(shù)據(jù):,,,,,百米.

(1)求的面積;

(2)求,之間的距離的平方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,離心率為,且橢圓四個(gè)頂點(diǎn)構(gòu)成的菱形面積為

(1)求橢圓C的方程;

(2)若直線(xiàn)l :y=x+m與橢圓C交于M,N兩點(diǎn),以MN為底邊作等腰三角形,頂點(diǎn)為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),分別是橢圓 的長(zhǎng)軸端點(diǎn)、短軸端點(diǎn),為坐標(biāo)原點(diǎn),若,.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如果斜率為的直線(xiàn)交橢圓于不同的兩點(diǎn) (都不同于點(diǎn)),線(xiàn)段的中點(diǎn)為,設(shè)線(xiàn)段的垂線(xiàn)的斜率為,試探求之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從8名運(yùn)動(dòng)員中選4人參加米接力賽,在下列條件下,各有多少種不同的排法?

(1)甲、乙兩人必須入選且跑中間兩棒;

(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;

(3)若甲、乙兩人都被選且必須跑相鄰兩棒;

(4)甲不在第一棒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;

(2)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí), 恒成立,求的范圍;

(2)若處的切線(xiàn)為,求的值.并證明當(dāng))時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的單調(diào)遞減區(qū)間:

1;

2;

3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中的說(shuō)法正確的是( )

A. 若向量,則存在唯一的實(shí)數(shù)使得;

B. 命題“若,則”的否命題為“若,則”;

C. 命題“,使得”的否定是:“,均有”;

D. 命題“在中,的充要條件”的逆否命題為真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案