【題目】設(shè)函數(shù).

(1)當(dāng)時(shí), 恒成立,求的范圍;

(2)若處的切線為,求的值.并證明當(dāng))時(shí), .

【答案】(1)(2)見解析

【解析】【試題分析】(1當(dāng)時(shí),由于,故函數(shù)單調(diào)遞增,最小值為.2利用切點(diǎn)和斜率為建立方程組,解方程組求得的值.利用導(dǎo)數(shù)證得先證,進(jìn)一步利用導(dǎo)數(shù)證,從而證明原不等式成立.

【試題解析】

解:由,

當(dāng)時(shí),得.

當(dāng)時(shí), ,且當(dāng)時(shí), ,此時(shí).

所以,即上單調(diào)遞増,

所以,

恒成立,得,所以.

(2)由

,且.

由題意得,所以.

在切線上.

所以.所以.

所以.

先證,即,

,

所以是增函數(shù).

所以,即.①

再證,即

,

,

時(shí), 時(shí), , 時(shí), .

所以上是減函數(shù),在上是增函數(shù),

所以.

,所以.②

由①②得,即上成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)fx=4sin2x+)(x∈R),有下列命題:

①y=fx)的表達(dá)式可改寫為y=4cos2x﹣);

②y=fx)是以為最小正周期的周期函數(shù);

③y=fx)的圖象關(guān)于點(diǎn)對(duì)稱;

④y=fx)的圖象關(guān)于直線x=﹣對(duì)稱.

其中正確的命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為的球的球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)間的球面距離都等于,且經(jīng)過這三個(gè)點(diǎn)的小圓周長(zhǎng)為,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,焦點(diǎn)為,準(zhǔn)線為,線段的中點(diǎn)為.點(diǎn)上在軸上方的一點(diǎn),且點(diǎn)的距離等于它到原點(diǎn)的距離.

(1)求點(diǎn)的坐標(biāo);

(2)過點(diǎn)作一條斜率為正數(shù)的直線與拋物線從左向右依次交于兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)“2019年3月在北京召開的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:

年齡

關(guān)注度非常高的人數(shù)

15

5

15

23

17

(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);

(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?

(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.

45歲以下

45歲以上

總計(jì)

非常髙

一般

總計(jì)

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:的離心率為,且過點(diǎn) (,),點(diǎn) P 在第四象限, A 為左頂點(diǎn), B 為上頂點(diǎn), PA 交 y 軸于點(diǎn) C,PB 交 x 軸于點(diǎn) D.

(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

(2) 求 △PCD 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),離心率為

(1)求的方程;

(2)過的左焦點(diǎn)且斜率不為的直線相交于兩點(diǎn),線段的中點(diǎn)為,直線與直線相交于點(diǎn),若為等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線()的焦點(diǎn)為,以拋物線上一動(dòng)點(diǎn)為圓心的圓經(jīng)過點(diǎn)F.若圓的面積最小值為.

(Ⅰ)的值;

(Ⅱ)當(dāng)點(diǎn)的橫坐標(biāo)為1且位于第一象限時(shí),過作拋物線的兩條弦,且滿足.若直線AB恰好與圓相切,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲的組觀測(cè)數(shù)據(jù)如下表:

溫度

產(chǎn)卵數(shù)/個(gè)

經(jīng)計(jì)算得: , , ,線性回歸模型的殘差平方和, ,其中, 分別為觀測(cè)數(shù)據(jù)中的溫差和產(chǎn)卵數(shù), .

(1)若用線性回歸方程,求關(guān)于的回歸方程(精確到);

(2)若用非線性回歸模型求得關(guān)于回歸方程為,且相關(guān)指數(shù).

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好.

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù) ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)為, ;相關(guān)指數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案