【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)求證:當(dāng)時,對任意都有;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
【答案】(1)見解析(2)
【解析】試題分析:(1),令,求導(dǎo)得單調(diào)遞減, 單調(diào)遞增, ,即;(2)令,則有兩個變號零點,且,通過分類討論得, .
試題解析:
(1)當(dāng)時, ,當(dāng)時, 顯然成立;
當(dāng)時, ;
令, ,則,
可得, , 減; , , 增;
故時, ,
綜上,任意都有,得證.
(2)函數(shù)定義域為,令,若有兩個極值點,則有兩個變號零點,且,
當(dāng)時, 在上恒成立,函數(shù)在上單增, 至多有一個零點,此時不存在兩個極值點;
當(dāng)時,令,可得,且,
,即函數(shù)在單減,在單增,
若條件成立,則必有 ,此時,
下證: 時,函數(shù)有兩個零點
由于,故,即在有唯一零點,記為;
易得時, ,且 ,
令,則,由(1)可得大于0恒成立,從而,
即,故在有唯一零點,記為,
從而, , ; , ; ,
綜上,函數(shù)有兩個極值點時, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖為某校數(shù)學(xué)專業(yè)N名畢業(yè)生的綜合測評成績(百分制)頻率分布直方圖,已知80-90分?jǐn)?shù)段的學(xué)員數(shù)為21人。
(1)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90-95分?jǐn)?shù)段內(nèi)的人數(shù);
(2)現(xiàn)欲將90-95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量, 獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機抽取了100名學(xué)生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨立的,求的平均值和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取次.記錄如下:
甲: , , , , , , ,
乙: , , , , , , ,
()用莖葉圖表示這兩組數(shù)據(jù).
()現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為派哪位學(xué)生參加合適?請說明理由.
()若將頻率視為概率,對甲同學(xué)在今后的三次數(shù)學(xué)競賽成績進行預(yù)測,記這次成績中高于分的次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點在線段上, , ,沿直線將翻折成,使點在平面上的射影落在直線上.
(Ⅰ)求證:直線平面;
(Ⅱ)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市甲水廠每天生產(chǎn)萬噸的生活用水,其每天固定生產(chǎn)成本為萬元,居民用水的稅費價格為每噸元,該市居民每天用水需求量是在(單位:萬噸)內(nèi)的隨機數(shù),經(jīng)市場調(diào)查,該市每天用水需求量的頻率分布直方圖如圖所示,設(shè)(單位:萬噸, )表示該市一天用水需求量(單位:萬元)表示甲水廠一天銷售生活用水的利潤(利潤=稅費收入-固定生產(chǎn)成本),注:當(dāng)該市用水需求量超過萬噸時,超過的部分居民可以用其他水廠生產(chǎn)的水,甲水廠只收成本廠供應(yīng)的稅費,該市每天用水需求量的概率用頻率估計.
(1)求的值,并直接寫出表達式;
(2)求甲水廠每天的利潤不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到其焦點的距離為,以為圓心且與拋物線準(zhǔn)線相切的圓恰好過原點.點是與軸的交點, 兩點在拋物線上且直線過點,過點及的直線交拋物線于點.
(1)求拋物線的方程;
(2)求證:直線過一定點,并求出該點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的極值;
(2)是否存在實數(shù),使得當(dāng)時,函數(shù)的最大值為?若存在,取實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點.
(1)求橢圓方程;
(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸截距的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com