【題目】寫出下列直線的斜率、一個法向量和一個方向向量:
(1);(2);
(3);(4).
【答案】(1);(2)不存在,;(3);(4);注:方向向量和法向量答案不唯一,只要共線就正確.
【解析】
(1)根據(jù)斜率公式可求斜率,結(jié)合方向向量和斜率的關(guān)系可求方向向量,根據(jù)法向量與方向向量垂直可求法向量;
(2)斜率不存在,結(jié)合直線走向可求方向向量,根據(jù)法向量與方向向量垂直可求法向量;
(3)根據(jù)斜率公式可求斜率,結(jié)合方向向量和斜率的關(guān)系可求方向向量,根據(jù)法向量與方向向量垂直可求法向量;
(4)根據(jù)斜率公式可求斜率,結(jié)合方向向量和斜率的關(guān)系可求方向向量,根據(jù)法向量與方向向量垂直可求法向量;
(1)因為,所以,斜率為,它的一個方向向量可以是,因為,所以一個法向量可以是,方向向量和法向量答案不唯一,只要共線就正確.
(2)因為,所以,斜率不存在,它的一個方向向量可以是,因為,所以一個法向量可以是,方向向量和法向量答案不唯一,只要共線就正確.
(3)因為,所以,斜率為,它的一個方向向量可以是,因為,所以一個法向量可以是,方向向量和法向量答案不唯一,只要共線就正確.
(4)因為,所以斜率為,它的一個方向向量可以是,因為,所以一個法向量可以是,方向向量和法向量答案不唯一,只要共線就正確.
科目:高中數(shù)學 來源: 題型:
【題目】,.
(1)若在是增函數(shù),求實數(shù)a的范圍;
(2)若在上最小值為3,求實數(shù)a的值;
(3)若在時恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,是橢圓上一點.
(1)求橢圓的方程;
(2)若直線的斜率為,且直線交橢圓于、兩點,點關(guān)于原點的對稱點為,點是橢圓上一點,判斷直線與的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)準備投入適當?shù)膹V告費對甲產(chǎn)品進行促銷宣傳,在一年內(nèi)預(yù)計銷量(萬件)與廣告費(萬元)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬元,每生產(chǎn)1萬件此產(chǎn)品仍需要再投入30萬元,且能全部銷售完,若每件甲產(chǎn)品銷售價格(元)定為:“平均每件甲產(chǎn)品生產(chǎn)成本的150%”與“年平均每件產(chǎn)品所占廣告費的50%”之和,則當廣告費為1萬元時,該企業(yè)甲產(chǎn)品的年利潤比不投入廣告費時的年利潤增加了__________萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是定義在上的不恒為零的函數(shù),對于任意實數(shù)滿足: ,, 考查下列結(jié)論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.
以上結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列滿足,前8項和.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足.
① 證明:為等比數(shù)列;
② 求集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)集合是集合…,的子集.記中所有元素的和為(規(guī)定:為空集時,=0).若為3的整數(shù)倍,則稱為的“和諧子集”.
求:(1)集合的“和諧子集”的個數(shù);
(2)集合的“和諧子集”的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓左頂點為M,上頂點為N,直線MN的斜率為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)直線l:與橢圓交于A,C兩點,與y軸交于點P,以線段AC為對角線作正方形ABCD,若.
()求橢圓方程;
()若點E在直線MN上,且滿足,求使得最長時,直線AC的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com