【題目】函數(shù)是定義在上的不恒為零的函數(shù),對于任意實數(shù)滿足: ,, 考查下列結(jié)論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.
以上結(jié)論正確的是__________.
【答案】②③④
【解析】
①因為對定義域內(nèi)任意x,y,f(x)滿足f(xy)=yf(x)+xf(y),
∴令x=y=1,得f(1)=0,故①錯誤,
②令x=y=1,得f(1)=0;
令y=1,有f(x)=f(x)+xf(1),
代入f(1)=0得f(x)=f(x),
故f(x)是(∞,+∞)上的奇函數(shù).故②正確,
③若 (n∈N),
則
.為常數(shù).
故數(shù)列{}為等差數(shù)列,故③正確,
④∵f(2)=2,f(xy)=xf(y)+yf(x),
∴當(dāng)x=y時,f(x2)=xf(x)+xf(x)=2xf(x),
則,
.
…
則,
若n∈N),
則為常數(shù),
則數(shù)列{}為等比數(shù)列,故④正確,
故答案為②③④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的一條直徑是橢圓的長軸,過橢圓上一點的動直線與圓相交于點,弦的最小值為.
(1)求圓及橢圓的方程;
(2) 已知點是橢圓上的任意一點,點是軸上的一定點,直線的方程為,若點到定直線的距離與到定點的距離之比為,求定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圓 的標(biāo)準(zhǔn)方程為,所以圓心為(0,1),半徑為,圓心關(guān)于直線的對稱點是(1,0),所以圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是,選A.
點睛:本題主要考查圓關(guān)于直線的對稱的圓的方程,屬于基礎(chǔ)題。解答本題的關(guān)鍵是求出圓心關(guān)于直線的對稱點,兩圓半徑相同。
【題型】單選題
【結(jié)束】
8
【題目】已知雙曲線的離心率為,焦點是, ,則雙曲線方程為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個調(diào)查小組在對人們的休閑方式的一次調(diào)查中,共調(diào)查了150人,其中男性45人,女性55人。女性中有35人主要的休閑方式是室內(nèi)活動,另外20人主要的休閑方式是室外運動;男性中15人主要的休閑方式是室內(nèi)活動,另外30人主要的休閑方式是室外運動。
參考數(shù)據(jù):
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為休閑方式與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力,某移動支付公司在我市隨機抽取了100名移動支付用戶進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣的方法隨機抽取5名用戶.
①求抽取的5名用戶中男、女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶中既有男用戶又有女用戶的概率.
(2)如果認(rèn)為每周使用移動支付次數(shù)超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過的前提下,認(rèn)為“喜歡使用移動支付”與性別有關(guān)?
附表及公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓關(guān)于坐標(biāo)軸對稱,以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系, , 為橢圓上兩點.
(1)求直線的直角坐標(biāo)方程與橢圓的參數(shù)方程;
(2)若點在橢圓上,且點在第一象限內(nèi),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)舉行的物理知識競賽中,將三個年級參賽學(xué)生的成績在進行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績在50-70分的頻率是多少
(2)求這三個年級參賽學(xué)生的總?cè)藬?shù)是多少:
(3)求成績在80-100分的學(xué)生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用隨機數(shù)表對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com