【題目】已知橢圓:的右焦點(diǎn)為點(diǎn)的坐標(biāo)為為坐標(biāo)原點(diǎn),是等腰直角三角形.

(1)求橢圓的方程;

(2)經(jīng)過(guò)點(diǎn)作直線交橢圓兩點(diǎn),求面積的最大值;

(3)是否存在直線交橢圓于兩點(diǎn),使點(diǎn)的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2);(3).

【解析】

1)由是等腰直角三角形,可得,從而可得橢圓方程;
2)設(shè)過(guò)點(diǎn)的直線的方程為,的橫坐標(biāo)分別為,求出的最大值,即可求得面積的最大值;
3)假設(shè)存在直線交橢圓于兩點(diǎn),且使點(diǎn)的垂心,設(shè)直線的方程為,代入橢圓方程,利用韋達(dá)定理結(jié)合,即可求得結(jié)論.

解:(1)由是等腰直角三角形,可得

故橢圓方程為;
2)設(shè)過(guò)點(diǎn)的直線的方程為的橫坐標(biāo)分別為,
將線的方程為代入橢圓方程,

消元可得,

,

,
,
,則
,則(當(dāng)且僅當(dāng)時(shí)取等號(hào))
面積,

∴△AOB面積的最大值為
3)假設(shè)存在直線交橢圓于兩點(diǎn),且使點(diǎn)的垂心,
設(shè),
因?yàn)?/span>,所以
于是設(shè)直線的方程為,代入橢圓方程,

消元可得
,得,且,

由題意應(yīng)有,所以,
所以
整理得
解得
經(jīng)檢驗(yàn),當(dāng)時(shí),不存在,故舍去.
當(dāng)時(shí),所求直線存在,且直線l的方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是為菱形,在平面內(nèi)的射影恰為線段的中點(diǎn).

1)求證:;

2)若,,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,該橢圓的左頂點(diǎn)A到直線的距離為

求橢圓C的標(biāo)準(zhǔn)方程;

若線段MN平行于y軸,滿足,動(dòng)點(diǎn)P在直線上,滿足證明:過(guò)點(diǎn)N且垂直于OP的直線過(guò)橢圓C的右焦點(diǎn)F

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,離心率.過(guò)的直線與橢圓相交于兩點(diǎn),且的周長(zhǎng)為.

1)求橢圓的方程;

2)若點(diǎn)位于第一象限,且,求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某大學(xué)中隨機(jī)選取7名女大學(xué)生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如下表:

編號(hào)

1

2

3

4

5

6

7

身高x

163

164

165

166

167

168

169

體重y

52

52

53

55

54

56

56

1)求y關(guān)于x的回歸方程;

2)利用(1)中的回歸方程,分析這7名女大學(xué)生的身高和體重的變化,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了慶祝第一個(gè)農(nóng)民豐收節(jié),西部山區(qū)某村統(tǒng)計(jì)了自2011年以來(lái)每年的年總收入,其中2018年統(tǒng)計(jì)的是1月到8月的總收入,統(tǒng)計(jì)結(jié)果如圖所示.根據(jù)圖形,下列四個(gè)判斷中,錯(cuò)誤的是(

A.2012年起,年總收入逐年增加B.2017年的年總收入在2016年的基礎(chǔ)上翻了番

C.年份數(shù)與年總收入成正相關(guān)D.由圖可預(yù)測(cè)從2014年起年總收入增長(zhǎng)加快

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正所在平面垂直平面,且邊在平面內(nèi),過(guò)、分別作兩個(gè)平面、(與正所在平面不重合),則以下結(jié)論錯(cuò)誤的是( )

A.存在平面與平面,使得它們的交線和直線所成角為

B.直線與平面所成的角不大于

C.平面與平面所成銳二面角不小于

D.平面與平面所成銳二面角不小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,焦點(diǎn)為,直線交拋物線兩點(diǎn),是線段的中點(diǎn),過(guò)軸的垂線交拋物線于點(diǎn).

1)求拋物線的焦點(diǎn)坐標(biāo);

2)若拋物線上有一點(diǎn)到焦點(diǎn)的距離為,求此時(shí)的值;

3)是否存在實(shí)數(shù),使是以為直角頂點(diǎn)的直角三角形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4名男同學(xué)中選出2人,6名女同學(xué)中選出3人,并將選出的5人排成一排.

1)共有多少種不同的排法?

2)若選出的2名男同學(xué)不相鄰,共有多少種不同的排法?(用數(shù)字表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案