【題目】已知函數(shù),.

(1)若,且內(nèi)有且只有一個(gè)零點(diǎn),求的值;

(2)若,且有三個(gè)不同零點(diǎn),問是否存在實(shí)數(shù)使得這三個(gè)零點(diǎn)成等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說明理由.

【答案】(1);(2)存在,.

【解析】

1)求出導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的正負(fù)分布求解函數(shù)單調(diào)性,再根據(jù)內(nèi)有且只有一個(gè)零點(diǎn),求得的值;

2)若有三個(gè)不同零點(diǎn),且成等差數(shù)列,可設(shè)利用待定系數(shù)法求解參數(shù)的取值.

(1)若,則,.

,則函數(shù)上單調(diào)遞增,則,

無零點(diǎn);

,令,得,.

上,,單調(diào)遞減,

上,單調(diào)遞增.

內(nèi)有且只有一個(gè)零點(diǎn),則

,得,得.

(2)因?yàn)?/span>,則,若有三個(gè)不同零點(diǎn),且成等差數(shù)列,

可設(shè)

,

,則,故,,.此時(shí),,故存在三個(gè)不同的零點(diǎn),故符合題意的的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.某大學(xué)為了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法從該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.已知該校一、二、三、四年級(jí)本科生人數(shù)之比為6554,則應(yīng)從一年級(jí)中抽取90名學(xué)生

B.10件產(chǎn)品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率為

C.已知變量xy正相關(guān),且由觀測(cè)數(shù)據(jù)算得=3,=35,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是=0.4x+2.3

D.從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,至少有一個(gè)黑球與至少有一個(gè)紅球是兩個(gè)互斥而不對(duì)立的事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,已知,且,對(duì)一切都成立.

1)當(dāng)時(shí),證明數(shù)列是常數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線平面E,F分別是,的中點(diǎn).

1)記平面與平面的交線為l,試判斷直線l與平面的位置關(guān)系,并加以證明;

2)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,點(diǎn)上的動(dòng)點(diǎn),的中點(diǎn).

1)請(qǐng)求出點(diǎn)軌跡的直角坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為若直線經(jīng)過點(diǎn)且與曲線交于點(diǎn),弦的中點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,分別是,的中點(diǎn).

1)求證:平面;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為為坐標(biāo)原點(diǎn),過點(diǎn)的直線交于、兩點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線軸的交點(diǎn)為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,點(diǎn)上的動(dòng)點(diǎn),的中點(diǎn).

1)請(qǐng)求出點(diǎn)軌跡的直角坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為若直線經(jīng)過點(diǎn)且與曲線交于點(diǎn),弦的中點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期的楚國(guó)大臣、愛國(guó)主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為2的正三角形組成的,將它沿虛線對(duì)折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______________

查看答案和解析>>

同步練習(xí)冊(cè)答案