【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期的楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形組成的,將它沿虛線對折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______________

【答案】;

【解析】

由題意可知該六面體是由兩個正四面體組合成的,求出棱長為2的正四面體的體積即可得解.

由題意可知該六面體是由兩個正四面體組合成的,如圖,三棱錐即為棱長為2的正四面體,

中點,連接,在上取一點,使,連接,

易知,,點的中心,為該三棱錐的高,

所以,,

所以,

所以該六面體的體積為.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若,且內有且只有一個零點,求的值;

(2)若,且有三個不同零點,問是否存在實數(shù)使得這三個零點成等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知定點,點Ax軸的非正半軸上運動,點By軸上運動,滿足,A關于點B的對稱點為M,設點M的軌跡為曲線C.

1)求C的方程;

2)已知點,動直線C相交于P,Q兩點,求過G,P,Q三點的圓在直線上截得的弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點

1)求拋物線的方程,并求其焦點坐標與準線方程;

2)直線與拋物線交于不同的兩點,過點軸的垂線分別與直線,交于,兩點,其中為坐標原點.為線段的中點,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內動點與點,連線的斜率之積為.

1)求動點的軌跡的方程;

2)過點的直線與曲線交于兩點,直線,與直線分別交于,兩點.求證:以為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】阿波羅尼斯(古希臘數(shù)學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標準方程__________;②△中,,則當△面積的最大值為時,______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若方程的實根個數(shù)不少于2個,證明:

2)若,處導數(shù)相等,求的取值范圍,使得對任意的,,恒有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABAC,M是棱BC的中點點P在線段A1B

(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大;

(2)若的中點,直線與平面所成角的正弦值為,求線段BP的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,大擺錘是一種大型游樂設備,常見于各大游樂園.游客坐在圓形的座艙中,面向外.通常大擺錘以壓肩作為安全束縛,配以安全帶作為二次保險.座艙旋轉的同時,懸掛座艙的主軸在電機的驅動下做單擺運動.今年五一,小明去某游樂園玩大擺錘,他坐在點A處,大擺錘啟動后,主軸在平面內繞點O左右擺動,平面與水平地面垂直,擺動的過程中,點A在平面內繞點B作圓周運動,并且始終保持,.已知,在大擺錘啟動后,給出下列結論:

①點A在某個定球面上運動;

②線段在水平地面上的正投影的長度為定值;

③直線與平面所成角的正弦值的最大值為;

與水平地面所成角記為,直線與水平地面所成角記為,當時,為定值.

其中正確結論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案