【題目】如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點.
(I)證明:AM⊥PM ;
(II)求二面角P-AM-D的大小.
科目:高中數(shù)學 來源: 題型:
【題目】設有關于的一元二次方程.
(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設的圖像與y軸交點的縱坐標為1,在y軸右側的第一個最大值和最小值分別為和.
(1)求函數(shù)的解析式:
(2)將函數(shù)圖像上所有點的橫坐標縮小原來的(縱坐標不變),再將所得圖像沿x軸正方向平移個單位,得到函數(shù)的圖像,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,對任意,有成立.
(1)求的通項公式;
(2)設,,是數(shù)列的前項和,求正整數(shù),使得對任意,恒成立;
(3)設,是數(shù)列的前項和,若對任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程及曲線上的動點到坐標原點的距離的最大值;
(Ⅱ)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)f(x)的解析式;
(2)將圖象上所有點向左平行移動θ()個單位長度,得到的圖象.若圖象的一個對稱中心為,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t是參數(shù)),在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(Ⅰ)寫出直線l的普通方程、曲線C的參數(shù)方程;
(Ⅱ)過曲線C上任意一點A作與直線l的夾角為45°的直線,設該直線與直線l交于點B,求的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com