分析 (1)依題意AD⊥BD,由CE⊥平面ABD,得CE⊥AD,再由線面垂直的判定可得AD⊥平面BCE;
(2)在Rt△BCE中,求解直角三角形可得BE=2,BD=3.再由AF=13AB,得BFBA=23,可得BFBA=BEBD=23,從而得到AD∥EF,再由線面平行的判定可得AD∥平面CEF;
(3)由(2)知AD∥EF,AD⊥ED,且ED=BD-BE=1,由F到AD的距離等于E到AD的距離為1.再求出三角形FAD的面積,然后利用等積法求得三棱錐A-CFD的體積.
解答 (1)證明:依題意:AD⊥BD,
∵CE⊥平面ABD,∴CE⊥AD,
∵BD∩CE=E,∴AD⊥平面BCE;
(2)證明:Rt△BCE中,∵CE=√2,BC=√6,
∴BE=2,
Rt△ABD中,AB=2√3,AD=√3,∴BD=3.
∵AF=13AB,∴BFBA=23,
∴BFBA=BEBD=23,則AD∥EF,
∵AD?平面CEF,EF?平面CEF,
∴AD∥平面CEF;
(3)解:由(2)知AD∥EF,AD⊥ED,且ED=BD-BE=1,
∴F到AD的距離等于E到AD的距離為1.
S△FAD=12•√3•1=√32.
∵CE⊥平面ABD,
∴VA−CFD=VC−AFD=13•S△FAD•CE=13•√32•√2=√66.
點評 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com