【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標系中的“太極圖”.整個圖形是一個圓形.其中黑色陰影區(qū)域在y軸右側部分的邊界為一個半圓,給出以下命題:
①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是
②當時,直線y=ax+2a與白色部分有公共點;
③黑色陰影部分(包括黑白交界處)中一點(x,y),則x+y的最大值為2;
④設點P(﹣2,b),點Q在此太極圖上,使得∠OPQ=45°,b的范圍是[﹣2,2].
其中所有正確結論的序號是( )
A.①④B.①③C.②④D.①②
【答案】A
【解析】
根據(jù)幾何概型概率計算,判斷①的周期性.根據(jù)直線和圓的位置關系,判斷②的正確性.根據(jù)線性規(guī)劃的知識求得的最大值,由此判斷③的正確性.將轉化為過的兩條切線所成的角大于等于,由此求得的取值范圍,進而求得的取值范圍,從而判斷出④的正確性.
對于①,將y軸右側黑色陰影部分補到左側,即可知黑色陰影區(qū)域占圓的面積的一半,
根據(jù)幾何概型的計算公式,所以在太極圖中隨機取一點,此點取自黑色陰影部分的概率是,正確;
對于②,當時,直線,過點,所以直線與白色部分在第I和第IV象限部分沒有公共點.圓的圓心為,半徑為,圓心到直線,即直線的距離為,所以直線與白色部分在第III象限的部分沒有公共點.綜上所述,直線y=ax+2a與白色部分沒有公共點,②錯誤;
對于③,設l:z=x+y,由線性規(guī)劃知識可知,當直線l與圓x2+(y﹣1)2=1相切時,z最大,
由解得z(舍去),③錯誤;
對于④,要使得∠OPQ=45°,即需要過點P的兩條切線所成角大于等于,
所以,即OP≤2,于是22+b2≤8,解得.
故選:A
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,沿其對角線BD將折起至,使得點在平面ABCD內的射影恰為點B,點E為的中點.
(Ⅰ)求證:平面BDE;
(Ⅱ)若,求與平面BDE所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)則x∈[﹣1,e]時,f(x)的最小值為_____;設g(x)=[f(x)]2﹣f(x)+a若函數(shù)g(x)有6個零點,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,分別為橢圓C的左、右焦點且.
(1)求橢圓C的方程;
(2)過P點的直線與橢圓C有且只有一個公共點,直線平行于OP(O為原點),且與橢圓C交于兩點A、B,與直線交于點M(M介于A、B兩點之間).
(i)當面積最大時,求的方程;
(ii)求證:,并判斷,的斜率是否可以按某種順序構成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關注.一些高中已經開始嘗試開設學生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調查學生成績與選修生涯規(guī)劃課程的關系,隨機抽取50名學生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(1)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有99%的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關”,并說明理由;
(2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學生中隨機抽取5名學生作為代表,從5名學生代表中再任選2名學生繼續(xù)調查,求這2名學生成績至少有1人優(yōu)秀的概率.
參考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關注.一些高中已經開始嘗試開設學生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調查學生成績與選修生涯規(guī)劃課程的關系,隨機抽取50名學生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(Ⅰ)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關”,并說明理由;
(Ⅱ)如果從全校選修生涯規(guī)劃課的學生中隨機地抽取3名學生,求抽到成績不夠優(yōu)秀的學生人數(shù)的分布列和數(shù)學期望(將頻率當作概率計算).
參考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線()上的兩個動點和,焦點為F.線段AB的中點為,且A,B兩點到拋物線的焦點F的距離之和為8.
(1)求拋物線的標準方程;
(2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,短軸長為2,過定點的直線交橢圓于不同的兩點、(點在點,之間).
(1)求橢圓的方程;
(2)若,求實數(shù)的取值范圍;
(3)若射線交橢圓于點(為原點),求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com