【題目】已知拋物線)上的兩個(gè)動點(diǎn),焦點(diǎn)為F.線段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線的焦點(diǎn)F的距離之和為8.


1)求拋物線的標(biāo)準(zhǔn)方程;

2)若線段AB的垂直平分線與x軸交于點(diǎn)C,求面積的最大值.

【答案】1;(2.

【解析】

1)利用拋物線的定義可得,求出的值,從而得到拋物線的方程;
2)設(shè)直線AB的方程為:,與拋物線方程聯(lián)立,利用韋達(dá)定理和弦長公式可得,利用AB的中垂線方程可得點(diǎn)C的坐標(biāo),再利用點(diǎn)到直線距離公式求出點(diǎn)C到直線AB的距離d,所以,令,則,利用導(dǎo)數(shù)可得最值.

1)由題意知,則,

,

∴拋物線的標(biāo)準(zhǔn)方程為;

2)設(shè)直線

,得,

,

,

,

設(shè)AB的中垂線方程為:,即,

可得點(diǎn)C的坐標(biāo)為,

∵直線,即,

∴點(diǎn)C到直線AB的距離

,則,

,

,

,則,在;在,

單調(diào)遞增,單調(diào)遞減,

∴當(dāng),即時(shí),.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F1、F2分別為雙曲線Ca0,b0)的左、右焦點(diǎn),點(diǎn)Mx0,y0)(x00)為C的漸近線與圓x2+y2a2的一個(gè)交點(diǎn),O為坐標(biāo)原點(diǎn),若直線F1MC的右支交于點(diǎn)N,且|MN||NF2|+|OF2|,則雙曲線C的離心率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾所周知的太極圖,其形狀如對稱的陰陽兩魚互抱在一起,也被稱為陰陽魚太極圖.如圖是放在平面直角坐標(biāo)系中的太極圖.整個(gè)圖形是一個(gè)圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個(gè)半圓,給出以下命題:

①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是

②當(dāng)時(shí),直線yax+2a與白色部分有公共點(diǎn);

③黑色陰影部分(包括黑白交界處)中一點(diǎn)(x,y),則x+y的最大值為2;

④設(shè)點(diǎn)P(﹣2,b),點(diǎn)Q在此太極圖上,使得∠OPQ45°b的范圍是[2,2]

其中所有正確結(jié)論的序號是(

A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a為常數(shù))和k為常數(shù)),有以下命題:①當(dāng)時(shí),函數(shù)沒有零點(diǎn);②當(dāng)時(shí),若恰有3個(gè)不同的零點(diǎn),則;③對任意的,總存在實(shí)數(shù),使得4個(gè)不同的零點(diǎn),且成等比數(shù)列.其中的真命題是_____(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),直線,過動點(diǎn)于點(diǎn),的平分線交軸于點(diǎn),且,記動點(diǎn)的軌跡為曲線

1)求曲線的方程;

2)過點(diǎn)作兩條直線,分別交曲線兩點(diǎn)(異于點(diǎn)).當(dāng)直線的斜率之和為2時(shí),直線是否恒過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體ABCD中,ABCD6,其余的棱長均為5,則與該四面體各個(gè)表面都相切的內(nèi)切球的半徑長等于_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)三棱錐的體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E,過右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓EAB兩點(diǎn)處的切線交于P,點(diǎn)P在定直線.

1)記點(diǎn),求過點(diǎn)與橢圓E相切的直線方程;

2)以為直徑的圓過點(diǎn)F,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案