【題目】已知F為拋物線焦點(diǎn),A為拋物線C上的一動(dòng)點(diǎn),拋物線CA處的切線交y軸于點(diǎn)B,以FA、FB為鄰邊作平行四邊形FAMB.

1)證明:點(diǎn)M在一條定直線上;

2)記點(diǎn)M所在定直線為l,與y軸交于點(diǎn)N,MF與拋物線C交于P,Q兩點(diǎn),求的面積的取值范圍.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1) 設(shè),求導(dǎo)可得切線斜率,即可求出切線方程,得出點(diǎn)坐標(biāo),求出的中點(diǎn)為,又為的中點(diǎn)可得,即證得結(jié)論;

(2) (1)可求得直線MF的方程: ,與拋物線方程聯(lián)立,借助韋達(dá)定理,弦長(zhǎng)公式及點(diǎn)到直線的距離公式即可求得面積.

(1)證明:設(shè),則在處的切線斜率為.

所以切線方程為:,.

的中點(diǎn)為,.,因?yàn)樗倪呅?/span>為平行四邊形,又為的中點(diǎn),所以,點(diǎn)在定值線

(2) 由(1)可知直線的方程: ,設(shè)聯(lián)立,化簡(jiǎn)得,

,,點(diǎn)到直線的距離為,所以面積為,面積取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,(其中)是上的一點(diǎn),且.

(1)求拋物線的方程;

(2)已知為拋物線上除頂點(diǎn)之外的任意一點(diǎn),在點(diǎn)處的切線與軸交于點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),設(shè),,的斜率分別為,,,求證:,成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從中國(guó)教育在線官方公布的考研動(dòng)機(jī)調(diào)查來(lái)看,本科生扎堆考研的原因大概集中在這6個(gè)方面:本科就業(yè)壓力大,提升競(jìng)爭(zhēng)力;通過(guò)考研選擇真正感興趣的專業(yè);為了獲得學(xué)歷;繼續(xù)深造;隨大流;有名校情結(jié).如圖是2015~2019年全國(guó)碩士研究生報(bào)考人數(shù)趨勢(shì)圖(單位:萬(wàn)人)的折線圖.

1)求關(guān)于的線性回歸方程;

2)根據(jù)(1)中的回歸方程,預(yù)測(cè)2021年全國(guó)碩士研究生報(bào)考人數(shù).

參考數(shù)據(jù):.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,若曲線與曲線關(guān)于直線對(duì)稱.

1)求曲線的直角坐標(biāo)方程;

2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地有種特產(chǎn)水果很受當(dāng)?shù)乩习傩諝g迎,但該種水果只能在9月份銷售,且該種水果只能當(dāng)天食用口感最好,隔天食用口感較差。某超市每年9月份都銷售該特產(chǎn)水果,每天計(jì)劃進(jìn)貨量相同,進(jìn)貨成本每公斤8元,銷售價(jià)每公斤12元;當(dāng)天未賣出的水果則轉(zhuǎn)賣給水果罐頭廠,但每公斤只能賣到5元。根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)?shù)貧鉁胤秶幸欢P(guān)系。如果氣溫不低于30度,需求量為5000公斤;如果氣溫位于,需求量為3500公斤;如果氣溫低于25度,需求量為2000公斤;為了制定今年9月份訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年9月份的氣溫范圍數(shù)據(jù),得下面的頻數(shù)分布表

氣溫范圍

天數(shù)

4

14

36

21

15

以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.

1)求今年9月份這種水果一天需求量(單位:公斤)的分布列和數(shù)學(xué)期望;

2)設(shè)9月份一天銷售特產(chǎn)水果的利潤(rùn)為(單位:元),當(dāng)9月份這種水果一天的進(jìn)貨量為(單位:公斤)為多少時(shí),的數(shù)學(xué)期望達(dá)到最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上一點(diǎn),的等差中項(xiàng).

)求橢圓的標(biāo)準(zhǔn)方程;

)若為橢圓的右頂點(diǎn),直線軸交于點(diǎn),過(guò)點(diǎn)的另一直線與橢圓交于、兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某國(guó)營(yíng)企業(yè)集團(tuán)公司現(xiàn)有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為了激化內(nèi)部活力,增強(qiáng)企業(yè)競(jìng)爭(zhēng)力,集團(tuán)公司董事會(huì)決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出)名員工從事第三產(chǎn)業(yè);調(diào)整后,他們平均每人每年創(chuàng)造利潤(rùn)萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.

(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(Ⅱ)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則實(shí)數(shù)的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,A1B1A1C1DB1C1的中點(diǎn),A1AA1B12.

1)求證:AB1∥平面A1CD;

2)若異面直線AB1BC所成角為60°,求四棱錐A1CDB1B的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點(diǎn),ACBE相交于點(diǎn)O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案