【題目】如圖,已知圓E:(x+ 2+y2=16,點F( ,0),P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.

(1)求動點Q的軌跡Γ的方程;
(2)設直線l與(1)中軌跡Γ相交于A,B兩點,直線AO,l,OB的斜率分別為k1 , k,k2(其中k>0),若k1 , k,k2恰好構成公比不為1的等比數(shù)列,求k的值.

【答案】
(1)解:連結QF,根據題意,|QP|=|QF|,

則|QE|+|QF|=|QE|+|QP|=4 ,

故動點Q的軌跡Γ是以E,F(xiàn)為焦點,長軸長為4的橢圓.

設其方程為 ,可知a=2, ,則b=1,

所以點Q的軌跡Γ的方程為


(2)解:設直線l的方程為:y=kx+m(其中k>0),A(x1,y1),B(x2,y2),

將直線l的方程代入橢圓方程,消去y整理得:

(1+4k2)x2+8kmx+4m2﹣4=0,

∴x1+x2=﹣ ,x1x2= ,且△=16(1+4k2﹣m2)>0,

∵k1,k,k2恰好構成公比不為1的等比數(shù)列,

∴k2=k1k2= ,

即k2 =k2 +km(﹣ )+m2

整理得:m2﹣4k2m2=0,

∵m≠0,

∴k= 或k=﹣ (舍)


【解析】(1)通過線段PF的垂直平分線和半徑PE相交于Q,利用橢圓的定義求動點Q的軌跡Γ的方程;(2)通過設直線l的方程為:y=kx+m(其中k>0),A(x1 , y1),B(x2 , y2),聯(lián)立直線與橢圓方程、利用韋達定理可知x1+x2=﹣ ,x1x2= ,△=16(1+4k2﹣m2)>0,利用k2=k1k2代入化簡計算即得結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin(x+ )圖象上各點的橫坐標縮短到原來的 倍(縱坐標不變),再向右平移 個單位,那么所得圖象的一條對稱軸方程為(
A.x=﹣
B.x=﹣
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣x,g(x)=xlnx.
(1)求函數(shù)f(x)的最大值;
(2)設0<a<b,證明0<g(a)+g(b)﹣2g( )<(b﹣a)ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為R的奇函數(shù)f(x)= ,其中h(x)是指數(shù)函數(shù),且h(2)=4.
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個平面圖形的斜二測畫法的直觀圖是一個邊長為a的正方形,則原平面圖形的面積為(
A. a2
B.a2
C.2 a2
D.2a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是(
A.(﹣
B.(﹣ ,
C.(﹣∞,
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB=1,AA1= ,D為AA1的中點,BD與AB1交于點O,CO⊥側面ABB1A1

(1)證明:BC⊥AB1
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=xex﹣ax2﹣x,a∈R.
(1)當a= 時,求函數(shù)f(x)的單調區(qū)間;
(2)若對x≥1時,恒有f(x)≥xex+ax2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(1)當a=﹣4時,求函數(shù)f(x)在[1,e]上的最大值及相應的x值;
(2)當x∈[1,e]時,討論方程f(x)=0根的個數(shù).
(3)若a>0,且對任意的x1 , x2∈[1,e],都有 ,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案