【題目】已知函數(shù).

1)求的極值;

2)若,且當為自然對數(shù)的底數(shù))時,恒成立,求實數(shù)的取值范圍.

【答案】1)見解析;(2.

【解析】

根據(jù)題意,求函數(shù)的定義域和導數(shù),在定義域范圍內判斷函數(shù)的單調性求出極值即可;

根據(jù)題意,求出函數(shù)的表達式,利用導數(shù)判斷函數(shù)上的單調性,求出函數(shù)的最大值,由題意知,,解不等式即可.

由題意知,定義域為,

因為函數(shù)

所以

,

所以當時,1,

因為當時,,

時,,

所以函數(shù)上單調遞增,在上單調遞減,

∴當時,有極大值為,

時,有極小值為.

因為函數(shù),

所以,

時,恒成立等價于

時,,

因為,

,又,

所以當時,,

時,,

所以函數(shù)上單調遞增,在上單調遞減,

因為,

,所以,

所以,即,

故實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,若上為增函數(shù),則稱一階比增函數(shù);若上為增函數(shù),則稱二階比增函數(shù)”.我們把所有一階比增函數(shù)組成的集合記為,所有二階比增函數(shù)組成的集合記為.

(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,











求證:;

(Ⅲ)定義集合

請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:極坐標與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)滿足,且.

1)求的解析式;

2)設函數(shù),當時,求的最小值;

3)設函數(shù),若對任意,總存在,使得成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行六面體中,,,.

1)證明:.

2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為拋物線的焦點,過的動直線交拋物線兩點.當直線與軸垂直時,

1)求拋物線的方程;

2)設直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,的斜率成等差數(shù)列,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調的銷售量;

(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經(jīng)過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數(shù)表:

有購買意愿對應的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位,再將所有點的橫坐標縮短到原來的倍,縱坐標不變,得到函數(shù)的圖像則下面對函數(shù)的敘述不正確的是(

A.函數(shù)的周期

B.函數(shù)的一個對稱中心

C.函數(shù)在區(qū)間內單調遞增

D.時,函數(shù)有最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面,,

的中點,.

(1)求證:平面

(2)求證:平面平面;

(3)求此多面體的體積.

查看答案和解析>>

同步練習冊答案