【題目】一袋中裝有10個(gè)大小相同的黑球和白球.已知從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.

(1)求白球的個(gè)數(shù);

(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的分布列.

【答案】(1)5;(2)答案見解析.

【解析】試題分析:1)設(shè)黑球的個(gè)數(shù)為x,則白球的個(gè)數(shù)為10-x,記兩個(gè)都是黑球得的事件為A,則至少有一個(gè)白球的事件與事件A為對(duì)立事件,由此能求出白球的個(gè)數(shù);
2X服從超幾何分布,其中N10,M5,n3,其中P(Xk)k0,1,2,3.

可求得分布列及數(shù)學(xué)期望.

試題解析:

(1)從袋中任意摸出2個(gè)球,至少得到1個(gè)白球為事件A,

設(shè)袋中白球的個(gè)數(shù)為x,

P(A)1,得到x5.

(2)X服從超幾何分布,其中N10M5,n3,其中P(Xk)k0,1,2,3.

于是可得其分布列為

X

0

1

2

3

P

X的數(shù)學(xué)期望

E(X)×0×1×2×3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),且,

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;

(2)求過(guò)點(diǎn)(3,0)且斜率為的直線被軌跡C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三條直線l1:2x-y+a=0(a>0),直線l2:4x-2y-1=0和直線l3:x+y-1=0,且l1l2的距離是.

(1)a的值.

(2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是?若能,求出P點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額 (單位:萬(wàn)元)具有較強(qiáng)的相關(guān)性,且兩者之間有如下對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

28

36

52

56

78

(1)求關(guān)于的線性回歸方程

(2)根據(jù)(1)中的線性回歸方程,當(dāng)廣告費(fèi)支出為10萬(wàn)元時(shí),預(yù)測(cè)銷售額是多少?

參考數(shù)據(jù): ,。

附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若, , 四個(gè)數(shù)中任取的一個(gè)數(shù), 是從, , 三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若是從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線l1axby40l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過(guò)點(diǎn)(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓的長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓的離心率是.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).若線段的中點(diǎn)的橫坐標(biāo)是,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí)(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)分析,該工廠生產(chǎn)的商品能全部售完.

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2b2,且b2a1、a2的等差中項(xiàng),a2b2、b3的等差中項(xiàng).

(1)求數(shù)列{an}{bn}的通項(xiàng)公式;

(2),求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案