在中,角,,所對的邊分別為,,,且.
(Ⅰ)若,求的面積;
(Ⅱ)若,求的最大值.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)因為,已知,要想求面積就要設法找到的值.已知,根據(jù)同角三角函數(shù)的基本關系,求得,再根據(jù)二倍角公式求,然后將其代入面積公式求解;(Ⅱ)先由二倍角公式結(jié)合(Ⅰ)中求得的的值,求出,由余弦定理以及求得,又,所以解不等式即可找到的最大值以及取得最大值時的和的取值.
試題解析:(Ⅰ)因為,,
所以. 2分
所以. 4分
因為,
所以. 6分
(Ⅱ)因為
所以. 8分
因為.
, 10分
所以.當且僅當時等號成立.
所以的最大值為. 13分
考點:1.二倍角公式;2.同角三角函數(shù)的基本關系;3.余弦定理;4.基本不等式及其應用;5.解不等式
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) x∈R且,
(Ⅰ)求的最小正周期;
(Ⅱ)函數(shù)f(x)的圖象經(jīng)過怎樣的平移才能使所得圖象對應的函數(shù)成為偶函數(shù)?(列舉出一種方法即可).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點是函數(shù)圖象上的任意兩點,若時,的最小值為,且函數(shù)的圖像經(jīng)過點.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)在中,角的對邊分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為坐標原點,向量,,,點滿足.
(Ⅰ)記函數(shù),,討論函數(shù)的單調(diào)性,并求其值域;
(Ⅱ)若三點共線,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com