【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.

(1)在圖 2中,設M為AC的中點,求證:BM丄AE;

(2)在圖2中,當DE最小時,求二面角A -DE-C的平面角.

【答案】(1)證明見解析;(2)

【解析】試題分析:1)根據(jù)題設條件推出再由平面平面推出平面,即可得證;(2分別以射線, 的方向為, 軸的正方向,建立空間直角坐標系,求出當最小時,點的坐標,分別求出平面和平面的法向量,代入向量夾角公式,可得二面角的平面角.

試題解析:1)證明:∵在中,

∴當的中點時,

∵平面平面 平面,平面平面

平面

平面

2)如圖,分別以射線, 的方向為, 軸的正方向,建立空間直角坐標系

,則, ,

, ,平面平面

當且僅當時, 最小,此時,

, 平面,則,即

,可得 ,則有

∴觀察可得二面角的平面角

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)若時,關于的方程有唯一解,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點

(1)求橢圓的方程;

(2)設橢圓與軸的非負半軸交于點,過點作互相垂直的兩條直線,分別交橢圓于兩點,連接,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosCacosB+bcosA=c

)求C;()若c=,ABC的面積為,求ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“, 兩項作品未獲得一等獎”;

丁說:“作品獲得一等獎”.

若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設滿足以下兩個條件的有窮數(shù)列, , 期待數(shù)列

;

.

)分別寫出一個單調遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項公式.

)記期待數(shù)列的前項和為,試證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)axln x,其中a為常數(shù).

(1)a=-1時,求f(x)的單調遞增區(qū)間.

(2)0<<e時,若f(x)在區(qū)間(0,e)上的最大值為-3,求a的值.

(3)a=-1時,試推斷方程|f(x)|是否有實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2b圖象上的點P(2,1)關于直線yx的對稱點Q在函數(shù)g(x)lnxa上.

()求函數(shù)h(x)g(x)f(x)的最大值;

()對任意x1[1,e],x2是否存在實數(shù)k,使得不等式成立若存在,請求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知△ABC中,角A,B,C所對的邊分別為ab,c,且3a2ab-2b2=0.

(Ⅰ)若B,求sinC的值;

(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.

查看答案和解析>>

同步練習冊答案