精英家教網 > 高中數學 > 題目詳情

【題目】設數列是首項為0的遞增數列,,滿足:對于任意的總有兩個不同的根,則的通項公式為_________

【答案】

【解析】

試題分析:,當n=1時,f1(x)=|sin(x-a1)|=|sinx|,x[0,a2],

對任意的b[0,1),f1(x)=b總有兩個不同的根,a2=π

f1(x)=sinx,x[0,π],a2=π

又f2(x)=|sin (x-a2)|=|sin (x-π)|=|cos |,x[π,a3]

對任意的b[0,1),f1(x)=b總有兩個不同的根,(5分)

又f3(x)=|sin (x-a3)|=|sin (x-3π)|=|sin π|,x[3π,a4]

對任意的b[0,1),f1(x)=b總有兩個不同的根,a4=6π…(6分)

由此可得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1若關于的方程在區(qū)間上有兩個不同的解

的取值范圍;

,求的取值范圍;

2設函數在區(qū)間上的最大值和最小值分別為,求的表達式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,點均在函數的圖象上.

(1)求證:數列為等差數列;

(2)設是數列的前項和,求使對所有都成立的最小正整數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為,采用系統抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學生分住在三個營區(qū),從在第一營區(qū),從在第二營區(qū),從在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數分別為(

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方體的棱長為1,分別是棱,的中點,過直線的平面分別與棱、交于,設,,給出以下四個命題:

四邊形為平行四邊形;

若四邊形面積,,有最小值;

若四棱錐的體積,,則為常函數;

若多面體的體積,則為單調函數.

其中假命題為(

A. B. C.③④ D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C經過點A(2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.

(1)求圓C的方程;

(2)若=2,求實數k的值;

(3)過點(0,4)作動直線m交圓C于E,F兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且pq是共線向量.

(1)求A的大;

(2)求函數y=2sin2B+cos(取最大值時,角B的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在坐標原點的橢圓經過點,且點為其右焦點.

)求橢圓的標準方程;

)是否存在平行于的直線,使得直線與橢圓有公共點,且直線的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據經驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.

(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?

(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.

查看答案和解析>>

同步練習冊答案