【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
【答案】(1)(2)證明過程詳見解析;(3)1:4
【解析】試題分析:(1)欲證平面平面,根據(jù)面面垂直的判定定理可知在平面內(nèi)一直線與平面垂直,而根據(jù)線面垂直的判定定理可知平面平面,滿足定理?xiàng)l件;(2)證明,利用線面平行的判定定理,即可證明平面;(3)不妨設(shè),求出,得到 ,求出PD,根據(jù)面,所以即為點(diǎn)到平面的距離,根據(jù)三棱錐的體積公式求出體積得到 的比值.
試題解析:
(1)證明:∵分別為的中點(diǎn),
∴,
又∵四邊形是正方形,
∴,∴,
∵在平面外, 在平面內(nèi),
∴平面, 平面,
又∵都在平面內(nèi)且相交,
∴平面平面.
(2)證明:由已知平面,
∴平面.
又平面,∴.
∵四邊形為正方形,∴,
又,∴平面,
在中,∵分別為的中點(diǎn),
∴,∴平面.
又平面,∴平面平面.
(3)解:∵平面,四邊形為正方形,不妨設(shè),則.
∵平面,且,
∴即為點(diǎn)到平面的距離,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為, 也是拋物線的焦點(diǎn),點(diǎn)M為在第一象限的交點(diǎn),且.
(1)求的方程;
(2)平面上的點(diǎn)N滿足,直線,且與交于A,B兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R.如果A∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c.已知c=2,C=.
(1)若△ABC的面積等于,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)工商局、消費(fèi)者協(xié)會(huì)在月號舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢服務(wù)活動(dòng),著力提升消費(fèi)者維權(quán)意識.組織方從參加活動(dòng)的群眾中隨機(jī)抽取名群眾,按他們的年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺記者要從抽取的群眾中選人進(jìn)行采訪,求被采訪人恰好在第組或第組的概率;
(Ⅱ)已知第組群眾中男性有人,組織方要從第組中隨機(jī)抽取名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知=(sinx,cosx),=(cosφ,sinφ)(|φ|<).函數(shù)
f(x)= 且f(-x)=f(x).
(Ⅰ)求f(x)的解析式及單調(diào)遞增區(qū)間;
(Ⅱ)將f(x)的圖象向右平移單位得g(x)的圖象,若g(x)+1≤ax+cosx在x∈[0, ]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)擲兩個(gè)骰子,計(jì)算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
(3)向上的點(diǎn)數(shù)之和是5的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),當(dāng)時(shí),曲線上對應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(II)設(shè)曲線與的公共點(diǎn)為,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com