【題目】已知三棱錐內(nèi)接于球O,平面ABC,為等邊三角形,且邊長,球的表面積為,則直線PC與平面PAB所成的角的正弦值為
A.B.
C.D.
【答案】D
【解析】
設(shè)D為AB中點,先證明CD⊥平面PAB得出∠CPD為所求角,利用勾股定理計算PA,PD,CD,得出結(jié)論.
解:設(shè)D,E分別是AB,BC的中點,AE∩CD=F,
∵PA⊥平面ABC,∴PA⊥CD,
∵△ABC是等邊三角形,∴CD⊥AB,
又PA∩AB=A,
∴CD⊥平面PAB,即∠CPD為PC與平面PAB所成的角.
∵△ABC是邊長為的等邊三角形,
∴CD=AE=,AFAE=1,且F為△平面ABC所在截面圓的圓心,
∵球O的表面積為16π,∴球O的半徑OA,
∴OF,
∵PA⊥平面ABC,∴PA=2OF=2,
∴PD,PC
∴sin∠CPD.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點E、F、G分別為棱A1D1、A1A、A1B1的中點,給出下列四個命題:①EF⊥B1C;②BC1∥平面EFG;③A1C⊥平面EFG;④異面直線FG、B1C所成角的大小為.其中正確命題的序號為( )
A.①②B.②③C.①②③D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019舉國上下以各種不同的形式共慶新中國成立70周年,某商家計劃以“我和我的祖國"為主題舉辦一次有獎消費活動,此商家先把某品牌酒重新包裝,包裝時在每瓶酒的包裝盒底部隨機(jī)印上“中"國"“夢”三個字樣中的一個,之后隨機(jī)裝箱(1箱4瓶),并規(guī)定:若顧客購買的一箱酒中的四瓶酒底部所印的字為同一個字,則此顧客獲得一等獎,此箱灑可優(yōu)惠36元;若顧客購買的一箱酒的四瓶灑底部集齊了“中"“國"二字且僅有此二字,則此顧客獲得二等獎,此箱灑可優(yōu)惠27元;若顧客購買的一箱酒中的四瓶酒的底部集齊了“中”“國"“夢”三個字,則此顧客獲得三等獎,此箱酒可優(yōu)惠18元(注:每箱單獨兌獎,箱與箱之間的包裝盒不能混).
(1)①設(shè)為顧客購買一箱酒所優(yōu)惠的錢數(shù),求的分布列;
②若不計其他損耗,商家重新包裝后每箱酒提價a元,試問a取什么范圍時才能使活動后的利潤不會小于搞活動之前?
(2)若顧客一次性購買3箱酒,并都中獎,可再加贈一張《我和我的祖國》電影票,顧客小張一次性購買3箱酒,共優(yōu)惠了72元,試問小張能否得到電影票,概率多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地自2014年至2019年每年年初統(tǒng)計所得的人口數(shù)量如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人數(shù)/千人 | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根據(jù)表中的數(shù)據(jù)計算2014年至2018年每年該地人口的增長數(shù)量,并描述該地人口數(shù)量的變化趨勢;
(2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中的單位是年,2014年初對應(yīng)時刻的單位是干人,設(shè)的反函數(shù)為求的值(精確到0.1),并解釋其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水污染現(xiàn)狀與工業(yè)廢水排放密切相關(guān),某工廠深人貫徹科學(xué)發(fā)展觀,努力提高污水收集處理水平,其污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡稱達(dá)標(biāo))的概率為p(0<p<1).經(jīng)化驗檢測,若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有4個標(biāo)準(zhǔn)水量的A級水池,分別取樣、檢測,多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗,混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗結(jié)果必不達(dá)標(biāo),若混合樣本不達(dá)標(biāo),則該組中各個樣本必須再逐個化驗;若混合樣本達(dá)標(biāo),則原水池的污水直接排放
現(xiàn)有以下四種方案:
方案一:逐個化驗;
方案二:平均分成兩組化驗;方案三;三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:四個樣本混在一起化驗.
化驗次數(shù)的期望值越小,則方案越"優(yōu)".
(1)若,求2個A級水樣本混合化驗結(jié)果不達(dá)標(biāo)的概率;
(2)①若,現(xiàn)有4個A級水樣本需要化驗,請問:方案一、二、四中哪個最“優(yōu)"?②若“方案三”比“方案四"更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的焦點為,為拋物線上異于原點的任意一點,以為直徑作圓,當(dāng)直線的斜率為1時,.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過焦點作的垂線與圓的一個交點為,交拋物線于,(點在點,之間),記的面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設(shè)點在線段上運(yùn)動,平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com