【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)E、F、G分別為棱A1D1、A1A、A1B1的中點(diǎn),給出下列四個(gè)命題:①EF⊥B1C;②BC1∥平面EFG;③A1C⊥平面EFG;④異面直線FG、B1C所成角的大小為.其中正確命題的序號(hào)為( )
A.①②B.②③C.①②③D.①②④
【答案】C
【解析】
畫(huà)出正方體的直觀圖,結(jié)合線面平行與垂直的判定定理和性質(zhì)定理逐項(xiàng)判斷即可得到正確選項(xiàng).
如圖,
正方體ABCD﹣A1B1C1D1中,A1D//B1C,又A1D⊥EF,故B1C⊥EF,即①正確;
又BC1∥AD1,AD1//EF,故BC1//EF,又EF平面EFG,故BC1∥平面EFG,即②正確;
因?yàn)?/span>EF⊥A1D,EF⊥A1B1,所以EF⊥平面A1B1CD,又A1C 平面A1B1CD,所以EF⊥A1C,同理可證EG⊥A1C,又EF∩EG=E,EF平面EFG,EG平面EFG,故A1C⊥平面EFG,即③正確;
連接AB1,則AB1//FG,故∠AB1C為異面直線FG與B1C所成角,且∠AB1C=,即④錯(cuò)誤.
故所有正確命題的序號(hào)為①②③.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)若a=4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若x1、x2∈R+,且x1≤x2,求證:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓C:(>>0)的右焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(1,),過(guò)點(diǎn)F且不與軸重合的直線與橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且滿足.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng),討論的零點(diǎn)個(gè)數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x﹣x2+3lnx.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:曲線y=f(x)在直線y=2x﹣2的下方(除點(diǎn)外).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為a,∠D=60°,點(diǎn)H為DC邊中點(diǎn),現(xiàn)以線段AH為折痕將△DAH折起使得點(diǎn)D到達(dá)點(diǎn)P的位置且平面PHA⊥平面ABCH,點(diǎn)E,F分別為AB,AP的中點(diǎn).
(1)求證:平面PBC∥平面EFH;
(2)若三棱錐P﹣EFH的體積等于,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,證明:當(dāng)時(shí),;當(dāng)時(shí),;
(2)若是的極大值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A經(jīng)過(guò)點(diǎn),且和直線相切.
(Ⅰ)求該動(dòng)圓圓心的軌跡的方程;
(Ⅱ)已知點(diǎn),若斜率為1的直線與線段相交(不經(jīng)過(guò)坐標(biāo)原點(diǎn)和點(diǎn)),且與曲線交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐內(nèi)接于球O,平面ABC,為等邊三角形,且邊長(zhǎng),球的表面積為,則直線PC與平面PAB所成的角的正弦值為
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com