【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對其等級系數(shù)進(jìn)行統(tǒng)計分析,得到頻率分布表如下:

X

1

2

3

4

5

頻率

a

02

045

b

c

1)若所抽取的20件日用品中,等級系數(shù)為4的恰有3件,等級系數(shù)為5的恰有2件,求a,bc的值;

2)在(1)的條件下,將等級系數(shù)為43件日用品記為,等級系數(shù)為52件日用品記為,現(xiàn)從, 5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數(shù)恰好相等的概率.

【答案】(1;(2

【解析】試題分析:(1)通過頻率分布表得推出.利用等級系數(shù)為的恰有件,等級系數(shù)為的恰有件,分別求出,然后求出.(2)根據(jù)條件列出滿足條件所有的基本事件總數(shù),, ,這件日用品中任取兩件,等級系數(shù)相等的事件數(shù),求解即可.

試題解析:(1)由頻率分布表得,

因為抽取的20件日用品中,等級系數(shù)為4的恰有3件,所以,

等級系數(shù)為5的恰有2件,所以,

從而,

所以

2)從日用品, ,中任取兩件,所有可能結(jié)果, 10種,

設(shè)事件A表示從日用品, 中任取兩件,其等級系數(shù)相等,則A包含的基本事件為, 4個,

故所求的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)的兩個極值點(diǎn)為,求函數(shù)的解析式;

(2)在(1)的條件下,求函數(shù)的圖象過點(diǎn)的切線方程;

(3)對一切恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.

(1)已知、,三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,的值

(2)該電子商務(wù)平臺將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵潛在消費(fèi)人群的消費(fèi),該平臺決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形, 為直角三角形, ,且.

1)證明:平面平面

2)若AB=2AE,求異面直線BEAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yAsin(ωxφ)(A>0,ω>0)的圖象過點(diǎn)P ,圖象與P點(diǎn)最近的一個最高點(diǎn)坐標(biāo)為 .

(1)求函數(shù)解析式;

(2)求函數(shù)的最大值,并寫出相應(yīng)的x的值;

(3)求使y≤0時,x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=4,|b|=3,(2a-3b)·(2ab)=61,

(1)求ab的夾角θ; (2)求|ab|;

(3)若a, b,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費(fèi),超過的部分按議價收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)若函數(shù)有兩個零點(diǎn),,試判斷的符號,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的單調(diào)遞減函數(shù),對任意都有,

(Ⅰ)判斷函數(shù)的奇偶性,并證明之;

(Ⅱ)若對任意,不等式為常實數(shù))都成立,求的取值范圍;(Ⅲ)設(shè), , , ,

, ,比較的大小并說明理由.

查看答案和解析>>

同步練習(xí)冊答案