【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖.

(1)已知、,三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,,的值

(2)該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望

【答案】(1),;(2)分布列見(jiàn)解析,數(shù)學(xué)期望.

【解析】

試題分析:(1)根據(jù)頻率分布直方圖可有,所以,又根據(jù)等差中項(xiàng)有,所以解得;(2)根據(jù)頻率分布直方圖可知高消費(fèi)人群與潛在消費(fèi)人群的頻率之比為,所以根據(jù)分層抽樣的性質(zhì)可知,應(yīng)從高消費(fèi)人群中抽取人,潛在消費(fèi)人群中抽取人,現(xiàn)從這人抽取人進(jìn)行回訪,分析可知三人獲得代金券總和的所有可能取值為,,,對(duì)應(yīng)的概率分別為,,,于是可以求出分布列和數(shù)學(xué)期望.

試題解析:(1)由于五個(gè)組的頻率之和等于1,故:

,

聯(lián)立解出,

(2)由已知高消費(fèi)人群所占比例為,潛在消費(fèi)人群的比例為0.4,由分層抽樣的性質(zhì)知抽出的10人中,高消費(fèi)人群有6人,潛在消費(fèi)人群有4人,隨機(jī)抽取的三人中代金券總和可能的取值為:240,210,180,150.

,,,,

列表如下:

240

210

180

150

數(shù)學(xué)期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣(mài)場(chǎng)的銷(xiāo)售量(單位:臺(tái)),并根據(jù)這10個(gè)賣(mài)場(chǎng)的銷(xiāo)售情況,得到如圖所示的莖葉圖. 為了鼓勵(lì)賣(mài)場(chǎng),在同型號(hào)電視機(jī)的銷(xiāo)售中,該廠商將銷(xiāo)售量高于數(shù)據(jù)平均數(shù)的賣(mài)場(chǎng)命名為該型號(hào)電視機(jī)的星級(jí)賣(mài)場(chǎng)”.

(1)求在這10個(gè)賣(mài)場(chǎng)中,甲型號(hào)電視機(jī)的“星級(jí)賣(mài)場(chǎng)”的個(gè)數(shù);

(2)若在這10個(gè)賣(mài)場(chǎng)中,乙型號(hào)電視機(jī)銷(xiāo)售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號(hào)電視機(jī)銷(xiāo)售量的方差為,根據(jù)莖葉圖推斷b為何值時(shí),達(dá)到最值.

(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校90名專(zhuān)職教師的年齡狀況如下表:

年齡

35歲以下

35~50歲

50歲以上

人數(shù)

45

30

15

現(xiàn)擬采用分層抽樣的方法從這90名專(zhuān)職教師中抽取6名老、中、青教師下鄉(xiāng)支教一年.

(Ⅰ)求從表中三個(gè)年齡段中分別抽取的人數(shù);

(Ⅱ)若從抽取的6個(gè)教師中再隨機(jī)抽取2名到相對(duì)更加邊遠(yuǎn)的鄉(xiāng)村支教,計(jì)算這兩名教師至少有一個(gè)年齡是35~50歲教師的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),).

(1)若的部分圖像如圖所示,的解析式

(2)在(1)的條件下,求最小正實(shí)數(shù),使得函數(shù)的圖象向左平移個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù);

(3)若上是單調(diào)遞增函數(shù),的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),使得函數(shù)上的最小值為1?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;

(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

X

1

2

3

4

5

頻率

a

02

045

b

c

1)若所抽取的20件日用品中,等級(jí)系數(shù)為4的恰有3件,等級(jí)系數(shù)為5的恰有2件,求a,b,c的值;

2)在(1)的條件下,將等級(jí)系數(shù)為43件日用品記為,等級(jí)系數(shù)為52件日用品記為,現(xiàn)從, 5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)

1求證:曲線在點(diǎn)處的切線過(guò)定點(diǎn);

2在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;

3求證:對(duì)任意給定的正數(shù) ,總存在,使得上為單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案