計算
(1)
(2)

(1)(2)   16

解析試題分析:(1)解:原式    每個得分點各1分,共4分
      5分
         6分
(2)   16       6分
考點:本試題主要是考查了對數(shù)式和指數(shù)式的運算法則的運用,屬于基礎(chǔ)題。考查同學(xué)們的計算能力和分析問題解決問題的能力。
點評:對數(shù)對數(shù)式的化簡和求值問題,一般統(tǒng)一底數(shù),以及能利用指數(shù)式的運算性質(zhì),化為以2,3,5為底的指數(shù)式,進行分數(shù)指數(shù)冪的運算同時求解。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)對于二次函數(shù),
(1)指出圖像的開口方向、對稱軸方程、頂點坐標(biāo);
(2)求函數(shù)的最值;
(3)分析函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當(dāng)一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設(shè)一次訂購量為x個,零件的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
一種放射性元素,最初的質(zhì)量為500g,按每年10﹪衰減.
(Ⅰ)求t年后,這種放射性元素質(zhì)量ω的表達式;
(Ⅱ)由求出的函數(shù)表達式,求這種放射性元素的半衰期(剩留量為原來的一半所需要的時間).(精確到0.1;參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分8分) 某車間生產(chǎn)某機器的兩種配件A和B,生產(chǎn)配件A成本費y與該車間的工人人數(shù)x成反比,而生產(chǎn)配件B成本費y與該車間的工人人數(shù)x成正比,如果該車間的工人人數(shù)為10人時,這兩項費用y和y分別為2萬元和8萬元,那么要使這兩項費用之和最小,該車間的工人人數(shù)x應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)計算(1);
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)某化工企業(yè)2012年底投入100萬元,購入一套污水處理設(shè)備.該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設(shè)備老化,以后每年的維護費都比上一年增加2萬元.設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費用為(萬元)。
(1)用表示
(2)當(dāng)該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設(shè)備.則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分分)已知函數(shù),是不同時為零的常數(shù)).
(1)當(dāng)時,若不等式對任意恒成立,求實數(shù)的取值范圍;
(2)求證:函數(shù)內(nèi)至少存在一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)某公司將進貨單價為8元一個的商品按10元一個銷售,每天可賣出100個,若這種商品的銷售價每個上漲1元,則銷售量就減少10個.
(1)求函數(shù)解析式;
(1)求銷售價為13元時每天的銷售利潤;
(2)如果銷售利潤為360元,那么銷售價上漲了幾元?

查看答案和解析>>

同步練習(xí)冊答案