【題目】已知z0=2+2i,|z-z0|=.
(1)求復數(shù)z在復平面內(nèi)的對應點的軌跡;
(2)求z為何值時|z|有最小值,并求出|z|的最小值.
【答案】(1)復數(shù)z點的軌跡為以z0(2,2)為圓心,為半徑的圓.(2)當z=1+i時,|z|min=
【解析】分析:(1)設,由,化簡即可得到復數(shù)在復平面內(nèi)對應的點的軌跡;
(2)由(1)可知當復數(shù)點在的連線上時,有最大值或最小值,即可得到結果.
詳解:(1)設z=x+yi(x,y∈R),由|z-z0|=,
得:|x+yi-(2+2i)|=|(x-2)+(y-2)i|=,.
解得:(x-2)2+(y-2)2=2...
∴復數(shù)z點的軌跡為以z0(2,2)為圓心,為半徑的圓...
(2)當z點在Oz0的連線上時,|z|有最大值或最小值..
∵|Oz0|=2,半徑為.
∴當z=1+i時,|z|min=..
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A. 一條直線與一個平面平行,它就和這個平面內(nèi)的任意一條直線平行
B. 平行于同一個平面的兩條直線平行
C. 平面外的兩條平行直線中的一條與一個平面平行,則另一條直線也與此平面平行
D. 與兩個相交平面的交線平行的直線,必平行于這兩個平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.
(1)以頻率為概率,若從這名觀眾中隨機抽取名進行調(diào)查,求這名觀眾中體育迷人數(shù)的分布列;
(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯概率不超過的前提下認為是體育迷與性別有關系嗎?
附表及公式:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某賓館安排五人入住3個房間,每個房間至少住1人,且不能住同一房間,則不同的安排方法有( )種
A. 64 B. 84 C. 114 D. 144
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標準差
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù).
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)試根據(jù)(1)求出的線性回歸方程,預測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).
相關公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x2的圖象在點(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足( )
A.0<x0<
B. <x0<1
C. <x0<
D. <x0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點. (Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A﹣A1B﹣C1的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com