【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列

1)求數(shù)列的通項公式;

2)設,數(shù)列的前項和為,求使的最大值

【答案】(1).(213

【解析】試題分析:(1)根據(jù)等差數(shù)列的前三項和為6,且成等比數(shù)列列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)由(1)可得,利用裂項相消法求和后,解不等式即可得結果.

試題解析:(1)設等差數(shù)列的首項為,公差為,依題意有,

,

,解得,所以

2)由(1)可得,

所以

,得,

所以的最大值為13

【方法點晴】本題主要考查等差數(shù)列、等比數(shù)列的綜合運用以及裂項相消法求和,屬于中檔題.裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,掌握一些常見的裂項技巧:①;②

;③;

;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】治理大氣污染刻不容緩,根據(jù)我國分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級,對應于空氣質(zhì)量指數(shù)的六個級別,指數(shù)越大,級別越高,說明污染越嚴重,對人體健康的影響也越明顯.專家建議:當空氣質(zhì)量指數(shù)小于時,可以戶外運動;空氣質(zhì)量指數(shù)及以上,不適合進行旅游等戶外活動,以下是某市月中旬的空氣質(zhì)量指數(shù)情況:

時間

11日

12日

13日

14日

15日

16日

17日

18日

19日

20日

AQI

149

143

251

254

138

55

69

102

243

269

(1)求月中旬市民不適合進行戶外活動的概率;

(2)一外地游客在月中旬來該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的一個頂點為A(2,3),兩條高所在直線方程為x-2y+3=0和xy-4=0,求△ABC三邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:

(1)y關于x的線性回歸方程;

(2)利用(1)中的回歸方程,當價格x=40/kg日需求量y的預測值為多少?

參考公式:線性回歸方程,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下:

(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人.

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

參考數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn,若S9=81,a3+a5=14

1)求數(shù)列{an}的通項公式;

2)設bn=,若{bn}的前n項和為Tn,證明:Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式e2xalnxa恒成立,則實數(shù)a的取值范圍是(

A.[0,2e]B.(﹣∞,2e]C.[02e2]D.(﹣∞,2e2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知四邊形是直角梯形,,,其中上的一點,四邊形是菱形,滿足,沿折起,使

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案