【題目】如圖所示,已知四邊形是直角梯形,,其中上的一點,四邊形是菱形,滿足,沿折起,使

(1)求證:平面平面

(2)求三棱錐的體積.

【答案】(1)證明見解析;(2).

【解析】試題分析:

(1)取的中點,取的中點,連接,,由題意結(jié)合等腰三角形的性質(zhì)可得,,結(jié)合線面垂直的判斷定理有,,所以平面,結(jié)合面面垂直的判斷定理可得平面平面.

(2)由題意結(jié)合(1)可知為三棱錐的底面的高,轉(zhuǎn)化頂點計算可得三棱錐的體積.

試題解析:

(1)如圖,取的中點,取的中點,連接,,由題意知:

,是等腰三角形,

,是等腰三角形,

則有,

分別為的中點,可得:,

所以,可得,,

,,平面,且不平行,所以平面,

平面,所以平面平面.

(2)三棱錐的體積,即為三棱錐的體積,由(1)知,平面,從而為三棱錐的底面的高

為直角三角形,,可得,而,從而,由題意知:,從而,

是等腰三角形,且,的中點,且,

,

,故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列

1)求數(shù)列的通項公式;

2)設(shè),數(shù)列的前項和為,求使的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

(3)若,設(shè)函數(shù)上的極值點為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時間(單位:小時)

收看人數(shù)

14

30

16

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“體育達(dá)人”,否則定義為“非體育達(dá)人”,請根據(jù)頻數(shù)分布表補全列聯(lián)表:

合計

體育達(dá)人

40

非體育達(dá)人

30

合計

并判斷能否有的把握認(rèn)為該校教職工是否為“體育達(dá)人”與“性別”有關(guān);

(2)在全!绑w育達(dá)人”中按性別分層抽樣抽取6名,再從這6名“體育達(dá)人”中選取2名作冬奧會知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),且的圖像在y軸右側(cè)的第一個最高點的橫坐標(biāo)為.

1)求的值;

2)已知在區(qū)間上的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界那么大,我想去看看,每年高考結(jié)束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動機強烈,旅游可支配收入日益增多,可見高中畢業(yè)生旅游是一個巨大的市場.為了解高中畢業(yè)生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某市的1000名畢業(yè)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(1)求所得樣本的中位數(shù)(精確到百元);

(2)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計有多少位同學(xué)旅游費用支出在 8100元以上;

(3)已知本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的8名學(xué)生中有5名女生,3名男生, 現(xiàn)想選其中3名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)=-x3+ax2+b(a,b∈R).

(1)當(dāng)a>0時,若f(x)滿足:y極小值=1,y極大值=,試求f(x)的解析式;

(2)若x∈[0,1]時,y=f(x)圖象上的任意一點處的切線斜率k滿足:|k|≤1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知21),1,7),5,1),設(shè)C是直線OP上的一點(其中O為坐標(biāo)原點)

1)求使取到最小值時的;

2)根據(jù)(1)中求出的點C,求cosACB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設(shè)施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表:(為了便于計算,把2015年簡記為5,其余以此類推)

年份(年)

5

6

7

8

投資金額(萬元)

15

17

21

27

(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;

(2)預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.

(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, .)

查看答案和解析>>

同步練習(xí)冊答案