【題目】已知常數(shù)且,在數(shù)列中,首項(xiàng),是其前項(xiàng)和,且,.
(1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),,證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(3)若當(dāng)且僅當(dāng)時(shí),數(shù)列取到最小值,求的取值范圍.
【答案】(1)證明見解析,;
(2)證明見解析,;(3).
【解析】
(1)令,求出的值,再令,由,得出,將兩式相減得,再利用等比數(shù)列的定義證明為常數(shù),可得出數(shù)列為等比數(shù)列,并確定等比數(shù)列的首項(xiàng)和公比,可求出;
(2)由題意得出,再利用等差數(shù)列的定義證明出數(shù)列為等差數(shù)列,確定等差數(shù)列的首項(xiàng)和公差,可求出數(shù)列的通項(xiàng)公式;
(3)求出數(shù)列的通項(xiàng)公式,由數(shù)列在時(shí)取最小值,可得出當(dāng)時(shí),,當(dāng)時(shí),,再利用參變量分離法可得出實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),有,即,;
當(dāng)時(shí),由,可得,將上述兩式相減得,
,,
且,
所以,數(shù)列是以,以為公比的等比數(shù)列,;
(2)由(1)知,
,由等差數(shù)列的定義得,
且,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,
因此,;
(3)由(2)知,,,
由數(shù)列在時(shí)取最小值,可得出當(dāng)時(shí),,當(dāng)時(shí),,
由,得,
得在時(shí)恒成立,
由于數(shù)列在時(shí)單調(diào)遞減,則,此時(shí),;
由,得,
得在時(shí)恒成立,
由于數(shù)列在時(shí)單調(diào)遞減,則,此時(shí),.
綜上所述:實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,且其圖象的一個(gè)對(duì)稱軸為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的倍,再將圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.
(1)求的解析式,并寫出其單調(diào)遞增區(qū)間;
(2)求函數(shù)在區(qū)間上的零點(diǎn);
(3)對(duì)于任意的實(shí)數(shù),記函數(shù)在區(qū)間上的最大值為,最小值為,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線距離不超過(guò)1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如下:
X | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,其中每一個(gè)小正方形的面積為1,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線性回歸方程計(jì)算所得數(shù)據(jù)為依據(jù))
附:對(duì)于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計(jì)分別為 = = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)任何有理數(shù)都是實(shí)數(shù);
(2)存在一個(gè)實(shí)數(shù),能使成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)是否存在這樣的實(shí)數(shù),使對(duì)所有的均成立?若存在,求出適合條件的實(shí)數(shù)的值或范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.(Ⅰ)若的面積等于,求;(Ⅱ)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的____條件;A是E的____條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長(zhǎng)都為2,點(diǎn)P,Q分別為棱CC1 , BC的中點(diǎn),則四面體A1﹣B1PQ的體積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com