【題目】二次函數(shù)f(x)=ax2+2a是區(qū)間[﹣a,a2]上的偶函數(shù),又g(x)=f(x﹣1),則g(0),g( ),g(3)的大小關(guān)系是( )
A.g( )<g(0)<g(3)
B.g(0)<g( )<g(3)??
C.g( )<g(3)<g(0)
D.g(3)<g( )<g(0)
【答案】A
【解析】解:由于二次函數(shù)f(x)=ax2+2a是區(qū)間[﹣a,a2]上的偶函數(shù),故有a=a2 , 求得a=1或a=0(舍去).
∴f(x)=x2+2,∴g(x)=f(x﹣1)=(x﹣1)2 +2 為二次函數(shù),
它的圖象的對(duì)稱軸為x=1,且圖象為開口向上的拋物線.
再根據(jù)| ﹣1|<|0﹣1|<|3﹣1|,
∴g( )<g(0)<g(3),
故選:A.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時(shí),求| + |的取值范圍;
(2)若g(x)=( + ) ,求當(dāng)k為何值時(shí),g(x)的最小值為﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時(shí),有f(x+3)=﹣f(x),且當(dāng)x∈[0,3)時(shí),f(x)=log4(x+1),給出下列命題:
①f(2015)>f(2014);
②函數(shù)f(x)在定義域上是周期為3的函數(shù);
③直線x﹣3y=0與函數(shù)f(x)的圖象有2個(gè)交點(diǎn);
④函數(shù)f(x)的值域?yàn)閇0,1).
其中不正確的命題個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的方程為y2=10x,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程和直線l的普通方程;
(2)設(shè)直線l與曲線C交于A、B兩點(diǎn),求弦長(zhǎng)|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng)·
乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個(gè)相同顏色的球,即為中獎(jiǎng).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)試問:購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)f(x)滿足f(1﹣x)=f(1+x),且在x∈[0,1]時(shí),f(x)= ,若直線kx﹣y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個(gè)交點(diǎn),則k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線對(duì)稱的圓為.
(1)求圓的方程;
(2)過點(diǎn)作直線與圓交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形中?若存在,求出所有滿足條件的直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b∈R且a≠0),F(xiàn)(x)= .
(1)若f(﹣1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時(shí),g(x)=f(x)﹣kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)是偶函數(shù),判斷F(m)+F(n)是否大于零.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,點(diǎn)P為曲線y=f(x)上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com