【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·
乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數(shù)的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.
【答案】(Ⅰ);(Ⅱ)顧客在甲商場中獎的可能性大.
【解析】試題分析:(Ⅰ)根據(jù)隨機事件的概率公式,即可求出的值;(Ⅱ)設(shè)顧客去甲商場轉(zhuǎn)動圓盤,指針指向陰影部分為事件,利用幾何概型求出顧客去甲商場中獎的概率;設(shè)顧客去乙商場一次摸出兩個相同顏色的球為事件,利用等可能事件概率計算公式求出顧客去乙商場中獎的概率,由此能求出顧客在甲商場中獎的可能性大.
試題解析:(Ⅰ)根據(jù)隨機事件的概率公式, ,解得.
(Ⅱ)設(shè)顧客去甲商場轉(zhuǎn)動圓盤,指針指向陰影部分為事件,試驗的全部結(jié)果構(gòu)成的區(qū)域為圓盤,
面積為(為圓盤的半徑),陰影區(qū)域的面積為.
故由幾何概型,得.
設(shè)顧客去乙商場一次摸出兩個相同顏色的球為事件,記2個白球為白1,白2;2個紅球為紅1、紅2;2個藍球為藍1、藍2.
則從盒子中一次性摸出2球,一切可能的結(jié)果有(白1、白2),(白1、紅1)、(白1、紅2),(白1、藍1),(白1、藍2);(白2、紅1),(白2、紅2),(白2、藍1),(白2、藍2);(紅1、藍1),(紅1、藍2),(紅2、藍1),(紅2、藍2);(藍1、藍2)等共15種;
其中摸到的是2個相同顏色的球有(白1、白2),(紅1、紅2),(藍1、藍2)等共3種;
故由古典概型,得.
因為,所以顧客在甲商場中獎的可能性大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn是正項數(shù)列{an}的前n項和,且Sn= an2+ an﹣
(1)求數(shù)列{an}的通項公式;
(2)若an=2nbn , 求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自選題:已知曲線C1: (θ為參數(shù)),曲線C2: (t為參數(shù)).
(1)指出C1 , C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1 , C2上各點的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線C1′,C2′.寫出C1′,C2′的參數(shù)方程.C1′與C2′公共點的個數(shù)和C與C2公共點的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 , 是坐標(biāo)原點, 分別為其左右焦點, , 是橢圓上一點, 的最大值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓交于兩點,且
(i)求證: 為定值;
(ii)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為得到函數(shù)y=sin(2x+ )的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向右平移 長度單位
B.向左平移 個長度單位
C.向右平移個 長度單位
D.向左平移 長度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下圖所示.
(I)請先求出頻率分布表中①、②位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試?
(Ⅲ)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機抽取2名學(xué)生接受A考官的面試,求:第4組至少有一名學(xué)生被考官A面試的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù).
(1)設(shè)集合和,分別從集合中隨機取一個數(shù)作為和,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(2)設(shè)點是區(qū)域內(nèi)的隨機點, 求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品每件成本為6元,每件售價為元(),年銷售萬件,若已知與成正比,且售價為10元時,年銷量為28萬件.
(1)求年銷售利潤關(guān)于售價的函數(shù)關(guān)系式.
(2)求售價為多少時,年利潤最大,并求出最大年利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取
2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:. 把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對 值不超過的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com