精英家教網 > 高中數學 > 題目詳情

【題目】已知關于的二次函數

1)設集合,分別從集合中隨機取一個數作為,求函數在區(qū)間上是增函數的概率;

2)設點是區(qū)域內的隨機點, 求函數在區(qū)間上是增函數的概率.

【答案】1;(2

【解析】試題分析:(1)本題是一個等可能事件的概率,試驗發(fā)生包含的事件是,滿足條件的事件是函數在區(qū)間上為增函數,根據二次函數的對稱軸,寫出滿足條件的結果,得到概率;(2)本題是一個等可能事件的概率問題,根據第一問做出的函數是增函數,得到試驗發(fā)生包含的事件對應的區(qū)域和滿足條件的事件對應的區(qū)域,做出面積,得到結果.

試題解析:要使函數在區(qū)間上是增函數, ,,

1)所有的取法總數為, 滿足條件的

, 所以所求概率

2)如圖

求得區(qū)域的面積為,,求得,

所以區(qū)域內滿足的面積為,所以所求概率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通項公式;
(2)求數列 的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·

乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.

(Ⅰ)求實數的值;

(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】的三個內角的對邊長分別為的外接圓半徑,則下列四個條件

(1); (2);

(3); (4).

有兩個結論:甲:是等邊三角形; 乙:是等腰直角三角形.

請你選出給定的四個條件中的兩個為條件,兩個結論中的一個為結論,寫出一個你認為正確的命題__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的焦點在軸上,橢圓的左頂點為,斜率為的直線交橢圓, 兩點,點在橢圓上, ,直線軸于點.

(Ⅰ)當點為橢圓的上頂點, 的面積為時,求橢圓的離心率;

(Ⅱ)當 時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對稱軸間的距離是 .若將函數f(x)的圖象向右平移 個單位,再把圖象上每個點的橫坐標縮小為原來的一半,得到g(x),則g(x)的解析式為(
A.g(x)=sin(4x+
B.g(x)=sin(8x﹣ )??
C.g(x)=sin(x+
D.g(x)=sin4x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,設關于的方程個不同的實數解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

同步練習冊答案