已知向量=(1,y)共線,且有函數(shù)y=f(x),
(Ⅰ)求函數(shù)y=f(x)的周期與最大值;
(Ⅱ)已知銳角△ABC的三個內角分別是A、B、C,若有,邊BC=,sinB=,求AC的長。
解:由,
,    
(Ⅰ)函數(shù)的周期為2π,函數(shù)的最大值為2。
(Ⅱ)由,得,即,
∵△ABC是銳角三角形,
,
由正弦定理及邊,
得AC=2。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin2x,1),向量
b
=(
2
sin(x+
π
4
)
2cosx
,1),函數(shù)f(x)=λ(
a
b
-1)

(1)x∈[-
8
π
4
],(λ≠0)
,求函數(shù)f (x)的單調遞減區(qū)間;
(2)當λ=2時,寫出由函數(shù)y=sin2x的圖象變換到與y=f(x)的圖象重疊的變換過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系xOy中,已知向量
AB
=(6,1),
BC
=(x,y),
CD
=(-2,-3)
,且
AD
BC

(1)求x與y之間的關系式;
(2)若
AC
BD
,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
,-1)
,
b
=(
1
2
,
3
2
)

(1)求證:
a
b

(2)是否存在最小的常數(shù)k,對于任意的正數(shù)s,t,使
x
=
a
+(t+2s)
b
y
=-k
a
+(
1
t
+
1
s
)
b
垂直?如果存在,求出k的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
,-1)
,
b
=(
1
2
,
3
2
)
,
(I)求與
a
平行的單位向量
c

(II)設
x
=
a
 +(t2+3)
b
,
y
=-k•t
a
+
b
,若存在t∈[0,2]使得
x
y
成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將選題號填入括號中.
(1)選修4一2:矩陣與變換
設矩陣M所對應的變換是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當α=
π
3
時,求C1與C2的交點坐標;
(Ⅱ)過坐標原點O做C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

同步練習冊答案