某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬(wàn)件)之間大體滿足關(guān)系:

(其中c為小于6的正常數(shù))

(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)

已知每生產(chǎn)1萬(wàn)件合格的儀器可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元,故廠方希望定出合適的日產(chǎn)量.

(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù)

(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?

答案:
解析:

  解:(1)當(dāng)時(shí),, (2分)

  當(dāng)時(shí),,

  綜上,日盈利額(萬(wàn)元)與日產(chǎn)量(萬(wàn)件)的函數(shù)關(guān)系為:

   (4分)

  (2)由(1)知,當(dāng)時(shí),每天的盈利額為0 (6分)

  當(dāng)時(shí),

  當(dāng)且僅當(dāng)時(shí)取等號(hào)

  所以當(dāng)時(shí),,此時(shí) (8分)

  當(dāng)時(shí),由

  函數(shù)上遞增,,此時(shí) (10分)

  綜上,若,則當(dāng)日產(chǎn)量為3萬(wàn)件時(shí),可獲得最大利潤(rùn)

  若,則當(dāng)日產(chǎn)量為萬(wàn)件時(shí),可獲得最大利潤(rùn) (12分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬(wàn)件)之間大體滿足關(guān)系:P=
1
6-x
,1≤x≤c
2
3
,     x>c
(其中c為小于6的正常數(shù))
(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)
已知每生產(chǎn)1萬(wàn)件合格的儀器可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,次品數(shù)P(萬(wàn)件)與日產(chǎn)量x(萬(wàn)件)之間滿足關(guān)系:P=
x2
6
,(1≤x<4)
x+
3
x
-
25
12
,(x≥4)
已知每生產(chǎn)l萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每生產(chǎn)l萬(wàn)件次品將虧損1萬(wàn)元.(利潤(rùn)=盈利一虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤(rùn)T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x定為多少時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會(huì)產(chǎn)生較多次品,根據(jù)經(jīng)驗(yàn)知道,次品數(shù)p(萬(wàn)件)與日產(chǎn)量x(萬(wàn)件)之間滿足關(guān)系:p=
x2
6
,(1≤x<4)
x+
3
x
-
25
12
,(x≥4)
.已知每生產(chǎn)l萬(wàn)件合格的元件可以盈利20萬(wàn)元,但每產(chǎn)生l萬(wàn)件次品將虧損10萬(wàn)元.(實(shí)際利潤(rùn)=合格產(chǎn)品的盈利-生產(chǎn)次品的虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的實(shí)際利潤(rùn)T(萬(wàn)元) 表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x(萬(wàn)件) 定為多少時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省東莞市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,次品數(shù)P(萬(wàn)件)與日產(chǎn)量x(萬(wàn)件)之間滿足關(guān)系:已知每生產(chǎn)l萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每生產(chǎn)l萬(wàn)件次品將虧損1萬(wàn)元.(利潤(rùn)=盈利一虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤(rùn)T(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x定為多少時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年寧夏高三上學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的

限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率與日產(chǎn)量(萬(wàn)件)之間滿足關(guān)系:

(其中為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)

已知每生產(chǎn)1萬(wàn)件合格的儀器可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元,故廠方希望定出合適的日產(chǎn)量.

(1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬(wàn)元)表示為日產(chǎn)量(萬(wàn)件)的函數(shù);

(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案