(本大題滿分14分)
已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當(dāng)時(shí),過(guò)點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合).求證直線軸的交點(diǎn)為定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
(1) (1) 當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的橢圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示以為圓心半徑是1的圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的橢圓,且除去兩點(diǎn);
當(dāng)時(shí)  軌跡表示焦點(diǎn)在軸上的雙曲線,且除去兩點(diǎn)
(2) 直線過(guò)定點(diǎn)  

試題分析:(Ⅰ)由題知: 
化簡(jiǎn)得:                  ……………………………2分
當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的橢圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示以為圓心半徑是1的圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的橢圓,且除去兩點(diǎn);
當(dāng)時(shí)  軌跡表示焦點(diǎn)在軸上的雙曲線,且除去兩點(diǎn);
……………………………6分
(Ⅱ)設(shè) 
依題直線的斜率存在且不為零,則可設(shè):,
代入整理得
,,               ………………………………9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004128464510.png" style="vertical-align:middle;" />不重合,則
的方程為 令,

故直線過(guò)定點(diǎn).                        ……………………………13分
解二:設(shè)
依題直線的斜率存在且不為零,可設(shè):
代入整理得:
,,                ……………………………9分
的方程為  令,

直線過(guò)定點(diǎn)                        ……………………………13分
點(diǎn)評(píng):解決含參數(shù)的曲線方程的問(wèn)題,主要是關(guān)注我們方程的特點(diǎn)來(lái)分類討論得到,同時(shí)能結(jié)合設(shè)而不求的思想求解坐標(biāo),進(jìn)而求解直線方程,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  
(I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若雙曲線的離心率為e,則e=             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知焦點(diǎn)在x軸上的雙曲線的漸近線方程為y= ±,則此雙曲線的離心率為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,過(guò)點(diǎn)作圓的割線與切線,為切點(diǎn),連接,的平分線與分別交于點(diǎn),若,則          ;  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標(biāo)系中,已知三點(diǎn),,,曲線C上任意—點(diǎn)滿足:
(l)求曲線C的方程;
(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動(dòng).若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),取得最小值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的漸近線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是非零實(shí)數(shù),則方程所表示的圖形可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知?jiǎng)狱c(diǎn)M的坐標(biāo)滿足,則動(dòng)點(diǎn)M的軌跡方程是
A.橢圓B.雙曲線C.拋物線D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案