“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.”同一事物從不同角度看,我們會(huì)有不同的認(rèn)識(shí).在數(shù)學(xué)的解題中,倘若能恰當(dāng)?shù)馗淖兎治鰡?wèn)題的角度,往往會(huì)有“山窮水盡疑無(wú)路,柳暗花明又一村”的豁然開(kāi)朗之感.閱讀以下問(wèn)題及其解答:
問(wèn)題:對(duì)任意a∈[-1,1],不等式x2+ax-2≤0恒成立,求實(shí)數(shù)x的取值范圍.
解:令f(a)=xa+(x2-2),則對(duì)任意a∈[-1,1],不等式x2+ax-2≤0恒成立只需滿足
x2-x-2≤0
x2+x-2≤0
,所以-1≤x≤1.
類比其中所用的方法,可解得關(guān)于x的方程x3-ax2-x-(a2+a)=0(a<0)的根為
 
考點(diǎn):類比推理
專題:推理和證明
分析:由已知類比可以得f(a)=a2+a(x2+1)+x-x3=a2+a(x2+1)+(1-x)(x+x2)=(a+x2+x)(a-x+1)是關(guān)鍵.
解答: 解:令f(a)=a2+a(x2+1)+x-x3=a2+a(x2+1)+(1-x)(x+x2)=(a+x2+x)(a-x+1),
要使這個(gè)等式成立,那么a+x2+x=0或a-x+1=0,
解得:x1=a+1,x2=
-1+
1-4a
2
x3=
-1-
1-4a
2
,
故答案為:x1=a+1,x2=
-1+
1-4a
2
,x3=
-1-
1-4a
2
點(diǎn)評(píng):類比思想一定要仔細(xì)閱讀所給題目的解法的實(shí)質(zhì),然后推導(dǎo)出所要求的題目的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2+2mx+2m+1=0的兩個(gè)根在(0,1)內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y∈R,設(shè)M=
x2
x2-
3
xy+y2
(y≠0),則M的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,若a1•a2n-1=4n,則數(shù)列{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲正弦函數(shù)shx=
ex-e-x
2
和雙曲余弦函數(shù)chx=
ex+e-x
2
與我們學(xué)過(guò)的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請(qǐng)類比正弦函數(shù)和余弦函數(shù)的和角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個(gè)類似的正確結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為2,數(shù)列{bn}為等差數(shù)列且bn=an+1-an (n∈N*).若b2=-2,b7=8,則a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
,
b
滿足|
a
+2
b
|=1,則
a
b
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若3cos2
A-B
2
+5sin2
A+B
2
=4,則tanAtanB=( 。
A、4
B、
1
4
C、-4
D、-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

坐標(biāo)原點(diǎn)到函數(shù)f(x)=ex+1的圖象在點(diǎn)(1,f(1))處切線y=g(x)的距離為( 。
A、
1
e
B、
1
e2+1
C、
e
e2+1
D、
e2+1
e2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案