【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)方程組的解集;
(2)方程的實數(shù)根組成的集合;
(3)平面直角坐標(biāo)系內(nèi)所有第二象限的點組成的集合;
(4)二次函數(shù)的圖象上所有的點組成的集合;
(5)二次函數(shù) 的圖象上所有點的縱坐標(biāo)組成的集合.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用隨機數(shù)表法對一個容量為500編號為000,001,002,,499的產(chǎn)品進行抽樣檢驗,抽取一個容量為10的樣本,若選定從第12行第5列的數(shù)開始向右讀數(shù),(下面摘取了隨機數(shù)表中的第11行至第15行),根據(jù)圖,讀出的第3個數(shù)是( )
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 05
26 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71
23 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 75
52 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 53
37 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39
A.841B.114C.014D.146
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過4噸時,每噸為2元;當(dāng)用水量超4噸時,超過部分每噸為3元.八月甲、乙兩用戶共交水費元,已知甲、乙兩用戶月用水量分別為噸、噸.
(1)求關(guān)于的函數(shù);
(2)若甲、乙兩用戶八月共交34元,分別求甲、乙兩用戶八月的用水量和水費.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的離心率,,分別為左、右焦點,過的直線交橢圓于,兩點,且的周長為8.
(1)求橢圓的方程;
(2)設(shè)過點的直線交橢圓于不同兩點,.為橢圓上一點,且滿足(為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機挑選出5名同學(xué),他們的數(shù)學(xué)成績與物理成績如下表:
數(shù)據(jù)表明與之間有較強的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績?yōu)?10分,利用(1)中的回歸方程,估計該同學(xué)的物理成績;
(3)本次考試中,規(guī)定數(shù)學(xué)成績達(dá)到125分為優(yōu)秀,物理成績達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯誤概率不超過0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù),.
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位計劃建造一間背面靠墻的小屋,其地面面積為12m2,墻面的高度為3m,經(jīng)測算,屋頂?shù)脑靸r為5800元,房屋正面每平方米的造價為1200元,房屋側(cè)面每平方米的造價為800元,設(shè)房屋正面地面長方形的邊長為m,房屋背面和地面的費用不計.
(1)用含的表達(dá)式表示出房屋的總造價;
(2)當(dāng)為多少時,總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: 的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為l.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍.
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1、PF2的斜率分別為k1、k2,若k≠0,試證明為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com