【題目】某單位計(jì)劃建造一間背面靠墻的小屋,其地面面積為12m2,墻面的高度為3m,經(jīng)測(cè)算,屋頂?shù)脑靸r(jià)為5800元,房屋正面每平方米的造價(jià)為1200元,房屋側(cè)面每平方米的造價(jià)為800元,設(shè)房屋正面地面長(zhǎng)方形的邊長(zhǎng)為m,房屋背面和地面的費(fèi)用不計(jì).
(1)用含的表達(dá)式表示出房屋的總造價(jià);
(2)當(dāng)為多少時(shí),總造價(jià)最低?最低造價(jià)是多少?
【答案】(1)(2)當(dāng)?shù)酌娴拈L(zhǎng)寬分別為4m,3m時(shí),可使房屋總造價(jià)最低,34600元.
【解析】
(1)設(shè)底面的長(zhǎng)為m,表示出正面,側(cè)面面積,可得總造價(jià);
(2)由基本不等式可得最小值.
解:(1)設(shè)底面的長(zhǎng)為m,寬m,則m.
設(shè)房屋總造價(jià)為,
由題意可得
(2),
當(dāng)且僅當(dāng)即時(shí)取等號(hào).
答:當(dāng)?shù)酌娴拈L(zhǎng)寬分別為4m,3m時(shí),可使房屋總造價(jià)最低,總造價(jià)是34600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 4 | 7 | 8 | 10 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)方程組的解集;
(2)方程的實(shí)數(shù)根組成的集合;
(3)平面直角坐標(biāo)系內(nèi)所有第二象限的點(diǎn)組成的集合;
(4)二次函數(shù)的圖象上所有的點(diǎn)組成的集合;
(5)二次函數(shù) 的圖象上所有點(diǎn)的縱坐標(biāo)組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形所在平面與四邊形所在平面互相重直,是等腰直角三角形,,,.
(1)求證:平面;
(2)設(shè)線段、的中點(diǎn)分別為、,求與所成角的正弦值;
(3)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過圓x2+(y-2)2=4外一點(diǎn)A(3,-2),引圓的兩條切線,切點(diǎn)為T1,T2,則直線T1T2的方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)求出y關(guān)于x的線性回歸方程;
(2)試預(yù)測(cè)加工10個(gè)零件需要多少小時(shí)?
(注:=,=-b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則函數(shù) 的零點(diǎn)個(gè)數(shù)為( )
A. 8 B. 7 C. 6 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ2=.
(1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;
(2)若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x+4y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com