【題目】設甲、乙、丙三個乒乓球協(xié)會的運動員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個協(xié)會中抽取6名運動員參加比賽
(1)求應從這三個協(xié)會中分別抽取的運動員人數(shù)
(2)將抽取的6名運動員進行編號,編號分別為 ,從這6名運動員中隨機抽取2名參加雙打比賽.(1)用所給編號列出所有可能的結果;(2)設為事件“編號為的兩名運動員至少有一人被抽到”,求事件發(fā)生的概率

【答案】
(1)

3,1,2


(2)

(1)共15種(2)


【解析】1.由分層抽樣方法可知應從甲、乙、丙這三個協(xié)會中分別抽取的運動員人數(shù)分別為3,2,1
2.(1)列舉15種;(2)符合條件的結果又9種,多以
【考點精析】解答此題的關鍵在于理解分層抽樣的相關知識,掌握先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標I卷)選修4-1:幾何證明選講
如圖AB是⊙O直徑,AC是⊙O切線,BC交⊙O與點E.

(1)若DAC中點,求證:DE是⊙O切線;
(2)若OA=CE,求∠ACB的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·陜西)設fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內(nèi)有且僅有一個零點(記為an), 且0<an-<()n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)已知拋物線C1:x2=4y的焦點F也是橢圓C2:(a>b>0)的一個焦點,C1與C2的公共弦長為2,過點F的直線l與C1相交于A, B兩點,與C2相交于C,D兩點,且 同向.
(1)C2的方程
(2)|AC|=|BD|,求直l的斜率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍(橫坐標不變),再將所得到的圖像向右平移個單位長度.
(1)求函數(shù)的解析式,并求其圖像的對稱軸方程;
(2)已知關于X的方程內(nèi)有兩個不同的解,
(1)求實數(shù)M的取值范圍:
(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如題(19)圖,三棱錐中,平面,分別為線段上的點,且

(1)證明:平面.
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)當時,解不等式;

(2)若關于的方程的解集中恰有一個元素,求的取值范圍;

(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐P-ABC中,PA平面ABC,

(1)(Ⅰ)求三棱錐P-ABC的體積;
(2)(Ⅱ)證明:在線段PC上存在點M,使得ACBM,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·陜西)設某校新、老校區(qū)之間開車單程所需時間為T,T只與道路暢通狀況有關,對其容量為100的樣本進行統(tǒng)計,結果如下:

T(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10


(1)求T的分布列與數(shù)學期望ET;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

同步練習冊答案